Linear theory of ionization cooling in 6D phase space
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A linear theory is developed for ionization cooling of muon beams in periodic channels that
can provide cooling of the transverse emittances and also of the longitudinal emittance via the
emittance exchange. The channels incorporate solenoids and quadrupoles for transverse focusing,
dipoles to generate dispersion, wedged absorbers for ionization, and rf cavities for acceleration. The
beam evolution near equilibrium is described by coupled first-order differential equations for five
generalized emittances with two excitation sources. The results should be useful for understanding
cooling process and for designing cooling channels of future muon colliders and neutrino factories.
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The physics potentials of neutrino factories and muon
colliders have stimulated worldwide studies of the feasi-
bility of high-energy muon accelerators [1, 2]. The biggest
challenge is to reduce the 6D phase-space volume of a
muon beam by orders of magnitude within a fraction of
the muons’ decay time. Ionization cooling has been pro-
posed as the most promising candidate for this purpose
[3, 4]. The principle of ionization cooling is similar to
that of synchrotron radiation damping in electron stor-
age rings [5] and arises from the fact that a particle’s mo-
mentum loss is parallel to the momentum while the accel-
eration is in the forward direction. Ionization cooling in
solenoidal focusing channels has been shown to be effec-
tive in reducing the transverse emittances of muon beams
[1, 2]. However, ionization cooling of the longitudinal
emittance is not straightforward because the derivative
of the energy loss with respect to the muon momentum is
either too small or of negative sign. Longitudinal cooling
may be achieved in an emittance-exchange scheme [6] in
which dispersions are introduced to transversely separate
muons of different momenta, and then wedged (thickness
varying transversely) absorbers are used to reduce mo-
mentum spread. Studies of ionization cooling in full 6D
phase space have mainly relied on simulations due to the
complexity of the problem. In this Letter, we develop
an analytic, linear theory of beam evolution in 6D phase
space during ionization cooling in periodic channels. We
use moment-equation approach which is well-established
in studying beam dynamics. Some previous applications
to ionization cooling are in the Refs. [7-11].

Assuming that the dissipative force from material in-
teraction is weak, the beam moments near equilibrium
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can be described in terms of the envelope functions de-
termined by the Hamiltonian forces (from the magnets
and rf) and a set of generalized emittances [12, 13]. A
linear theory of transverse ionization cooling in 4D phase
space in periodic, axially symmetric solenoidal channels
was developed previously as an evolution of two gener-
alized emittances—the transverse emittance and the an-
gular momentum [9, 10]. In the 6D case, there are five
generalized emittances—the two transverse emittances,
the longitudinal emittance, the angular momentum, and
an x-y correlation. We derive a set of coupled first-order
differential equations for the generalized emittances that
describe the effects of damping, emittance exchange, and
heating due to multiple scattering and energy straggling.
The equations turn out to be simple and should be useful.
To begin, we introduce the phase-space vector X =
(T,Pz,Y, Py, 2,6)T, where z, p,, y and p, are the muon’s
transverse coordinates and canonical momenta relative
to the reference particle with momentum py; and z and
0 = (p — po)/po are the longitudinal coordinate and mo-
mentum deviation, respectively. The equation of motion
using path-length s as the time variable is of the form
X =JHX + X . (1)
ds ds |y
Here, the first term on the right-hand side is the Hamilto-
nian part of the motion, where J is the simplectic matrix
whose elements are the Poisson brackets of the phase-
space variables, and H is the symmetric matrix associ-
ated with the Hamiltonian H viaH = XTHX/2. The last
term in Eq. (1) represents the interaction with materials
giving rise to weak dissipation and diffusion.
The Hamiltonian considered in this Letter is
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Here r(s) = 3L-B,(0,0,s) is the normalized on-axis
solenoid field strength, where ¢ is muon’s charge; p(s) =
= By(0,0,5) is the radius of curvature of the reference

trajectory; g(s) = ;;1 88;‘ is the quadrupole gradient; v

is the Lorentz factor of the reference particle; and V (s)
represents longitudinal focusing from rf. The quadrupole
gradient is chosen as g(s) = —1/2p(s)? so that the net
focusing due to the solenoids, dipoles, and quadrupoles
in the x- and y-directions have the same strength K (s) =
k(s)% + 1/2p(s)?. Symmetric focusing is preferred since
the main solenoid field continuously rotates the beam and
tends to make it symmetric.

As shown for transverse cooling [10], beam motion in
the Larmor frame is much simpler because transverse
coupling from the angular momentum term is removed.
Rotating to the Larmor frame, the Hamiltonian becomes
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Here the symbol ~ indicates quantities in the Larmor
frame, which is rotating with the angle ¢(s) = [, x(

To further simplify, we decouple the transverse and longl—
tudinal motions by introducing the dispersion functions
D, and D,, and the canonical transformation [14]
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Hereafter a prime indicates differentiation with respect to
s. By requiring the dispersions to satisfy the equations

and to be zero at the rf cavities, the transverse and longi-
tudinal motions are decoupled with the new Hamiltonian
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The material part of Eq. (1) is of the form
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Here (dX/ds)|m,p is the dissipative part of the interac-
tion with material, A is the dissipation matrix, and =
represents the stochastic excitations discussed later. The

dissipative part of the equation of motion is given by
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Here n = l% is a positive quantity characterizing the

average force due to ionization energy loss for a muon of
momentum p and velocity v. The terms (p, + ky) and
(py— k) are, respectively, the x- and y-components of the
kinetic momentum. The wedged absorbers are treated as
having uniform thickness with density depending linearly
on the transverse coordinates. To linear order, the energy
dependence of ionization energy loss is given by dsn. The
simple model in Egs. (10, 11) has been shown to work well
for transverse cooling [10].

The matrix A in Eq. (8) can be decomposed into two
parts A = Ay + Ap, where Ay = (A+ JATJ)/2. The
matrix Ag can be considered as belonging to the Hamil-
tonian part since it is of the form J times a symmetric
matrix [13]. We drop this part and use only Ap as the
dissipation matrix. (We may assume that the Hamilto-
nian contains negligibly small additional terms that can-
cel the terms due to Ag.) Then Egs. (9-12) becomes

dx 1

ds M,D— —57737; (13)
dp, 1 1
a5 M’D— 5Pz — NkY + 5(6:”))2, (14)
dz 1

ds M,D— —5(3677)75; (15)
do 1
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The equations for the y plane are the same as those for
the x except a positive sign for the nkr term.

The phase-space distributions relevant in linear ap-
proximation are Gaussian distributions that can be spec-
ified by the quadratic beam-moment matrix ¥ = (X XT),
where the brackets indicate the averaging. From the
equation of motion we have the moment equation

= =(JH+Ap)S+X(JH+ Ap)” + B. (17)

Here the diagonal matrix B = diag(0,x,0,x,0,xs)
arises from the stochastic excitations represented by =

in Eq. (8). There are two different sources of exci-
tations: multiple scattering characterized by the pro-
jected mean-square angular deviation per unit length
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of absorbers, and energy straggling characterized by the
mean-square relative energy deviation per unit length x;.

We need to make two changes of variables as in
the case of the Hamiltonian part of the motion. The
change to the Larmor frame is easy; since the muons’ lo-
cal interaction with material is isotropic, Eqgs. (13-17)
will not be changed by a rotation and thus apply to
the variables (%, P, ,Py,?,0). Changing variables to
(T3, Pes»UpsPys» 2,0) via Eqgs. (4, 5) is straightforward
but the resulting equations are cumbersome and not writ-
ten down explicitly. From now on, we will drop the ~
symbol to simplify the notation.

The moment equation is formidable since it represents
a coupled evolution of the 21 independent moments in the
symmetric 6x6 matrix 3. However, the system becomes
greatly simplified if consideration is limited to the behav-
ior near equilibrium, as we do in the rest of this Letter.
It is physically reasonable to assume that the moment
matrix at equilibrium is a periodic function of s with the
periodicity of the cooling channel. If the dissipative forces
are weak, the distribution function, which is of Gaussian
shape for the linear system under consideration, must
also evolve approximately as in the Hamiltonian system.
The distribution function can thus be specified by a set
of quadratic single-particle invariants with periodic coef-
ficients. In the present case, from the decoupled Hamil-
tonian Hg, we find the following five linearly-independent
quadratic invariants:
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Here the envelope functions, yr, etc., are the periodic
solution of the following equations
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Br = —2ar, ar = KBr —yr, 71 = ﬂTT (23)
and
1+ a?
BL = —2Iar, o, =VBr —Ivp, v = ,BLL- (24)

In the above, I, I, and I, are the familiar Courant-
Snyder (C-S) type invariants [15] for each of the three
degrees of freedom; L, is the angular momentum; and I,
is the invariant obtained by taking Poisson bracket of L,
and I . Note that I, I, and I, are associated with the
same set of the C-S parameters vy, ar, Br reflecting the
degeneracy of the z-y part of the Hamiltonian Hg. The
four transverse invariants were discussed in the context of
an isotropic harmonic oscillator [16]. The five invariants
form a complete set of the quadratic invariants.

Averaged over the phase space, these five single-
particle invariants lead to five beam invariants that are
usually called beam emittances:
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Using emittances and invariants, the normalized equilib-
rium distribution can be written as
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where the 6D emittance is

€6D = (€g€y — eﬁy —2)e,. (27)

We can then compute the corresponding nonzero mo-
ments as follows:
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These equations may be viewed as the inverse of Eq. (25).

A general study of the equilibrium state for a weakly
dissipative, periodic system was carried out previously
based on orthogonal expansions in the linear space of the
moments [13]. These authors pointed out the existence
of five invariants for systems with z-y degeneracy.

We now consider the system near but not at the equi-
librium due to interaction with material. The approach
of this system to the equilibrium may be described by
a slow s-dependence of the generalized emittances. The
s-derivatives can be computed by inserting the material
part of the equation of motion, Egs. (13-16), into the
derivative of Eq. (25) and rearranging the results with
Eqgs. (28-31). In doing this we note that the Hamilto-
nian forces do not contribute and the betatron and syn-
chrotron motions are decoupled. The stochastic contri-
butions can be derived from Eq. (17). The results are

€, = —(n—ec_)es +ecyeq +esyery +ber + x5, (32)
e = —(n—ec_)eq + ecies + Xa, (33)
€py = —(1 — €c_)ezy + €54 €5 + Xy, (34)
€, = —(n—ec_)er +bes + xr, (35)
€. = —(0sm + 2ec_)e. + Xz, (36)

where €, and €, are the symmetric and asymmetric emit-
tances (e, & €,)/2, e = |D| - |8n|/2 is half of the max-
imum exchange rate through dispersions and wedges,
¢y = cos(@p = Ow) and sy = sin(fp + ) with 6p
and Oy being the orientations of the dispersion vector
and the wedges, and b = nkfBr + ares— + Bre's_ with
¢’ =|D'|-|0n|/2 and 5" = sin(6 — Oy ). The excitation
terms are
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Here the H functions are defined similarly as Egs. (18-
22) but replacing phase-space variables with dispersion
functions. For example, as in radiation damping the-
ory, He = vrD?% + 2arD,D!, + BrD!?. These heat-
ing terms arise from stochastic contribution to the beam
invariants. For instance, multiple scattering and en-
ergy straggling cause the momenta to fluctuate with
(p2) = (p2) = x and (%) = x5, but there are no cor-
related position fluctuations. Thus they contribute to
the invariants through only the 3{p?) term and yield the
Brx and Brxs terms. Meanwhile, straggling causes cor-
related fluctuations in transverse position and momen-
tum via Eq. (4), thus yields the four #H xs terms that
have the invariant structures.

Note that the emittance exchange is accomplished by
trading the damping rate ec_ between the transverse and
longitudinal degrees of freedom. Without excitations,

d66D
ds

Therefore the total 6D damping rate is independent of
the emittance exchange. This is equivalent to the Robin-
son theorem for radiation damping [5].

Let us make a few observations on the emittance evolu-
tion equations, Egs. (32-36). First, as the dispersions go
to zero, they reduce to our previous result on the trans-
verse cooling in straight solenoid channels [10]. Second,
the longitudinal and transverse evolutions are decoupled
(except exchanging the damping rate). Hence the longi-
tudinal evolution can be analytically integrated. Third,
because the emittances will not change much in one pe-
riod, it should be a good approximation to average the
evolution equation over one period. After averaging, the
emittances can be solved by straightforward diagonal-
ization. Particularly, the equilibrium longitudinal and
symmetric transverse emittances are then given by
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Here the overline indicates averaging over a period.
Fourth, to achieve the maximum longitudinal cooling,
the ec_ term needs to be maximized by increasing dis-
persion, the number of wedges, and wedge angle, and
by orienting the wedge along the dispersion vector (i.e.,
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FIG. 1: Transverse and longitudinal emittance evolution

Al = 0p — Oy = 0). If the wedges are placed at dis-
persion maxima with A§ = 0, the term b reduces to
b = nkPr, which can be designed to average to zero.
Fifth, it is easy to see, from the excitation terms, that an
obvious way to limit heating is to reduce the transverse
and longitudinal beta functions at the absorbers. It is
also important to optimize the dispersions to balance the
needs of large emittance exchange and small excitations.

As an example, we consider a 6D cooling channel mod-
ified from the first section of the “SFOFO” transverse
cooling channel used in the feasibility study-II [2]. About
20cm dispersion is introduced in the middle of the 5.5m
solenoid cooling cells. Lithium-hydride wedged absorbers
with 90° vertex are placed at the dispersion maximum
to obtain emittance exchange. Using Egs. (32-36), we
tracked the emittances over 500m for an axisymmetric in-
coming beam with €, = 5 mm-rad and €, = 50 mm-rad,
which is close to the feasibility study values. Figure 1
shows the evolution of €, and €,. The other three emit-
tances are orders of magnitude smaller. The transverse
emittance has damped to its equilibrium value while the
longitudinal emittance is still far from its equilibrium
value of 1.8 mm-rad. This is partly due to the large initial
longitudinal emittance and partly because the longitudi-
nal damping coefficient is only 20% of the transverse one.

In closing, we developed a linear theory of 6D ioniza-
tion cooling that should be useful for understanding the
cooling process and for initial evaluation of cooling chan-
nels. The next step is to include the nonlinearity and
develop practical designs, a subject of ongoing research.
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