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Abstract

A procedure uses the equations that govern ionization cooling, and leads to the most im-
portant parameters of a muon cooling channel that achieves assumed performance parameters.
First, purely transverse cooling is considered, followed by both transverse and longitudinal
cooling in quadrupole and solenoid channels. Similarities and differences in the results are
discussed in detail, and a common notation is developed. Procedure and notation are applied to
a few published cooling channels. The parameters of the cooling channels are derived step by
step, starting from assumed values of the initial, final and equilibrium emittances, both trans-
verse and longitudinal, the length of the cooling channel, and the material properties of the
absorber. The results obtained include cooling lengths and partition numbers, amplitude func-
tions and limits on the dispersion at the absorber, length, aperture and spacing of the absorber,
parameters of the RF system that achieve the longitudinal amplitude function and bucket area
needed. Finally, I compute the merit factor that describes the enhancement of the density in 6D
phase space. The consequences of changes in the input parameters are discussed. The lattice
parameters needed to achieve the assumed performance are summarised. The design proper
of such a lattice, i.e. finding the precise arrangement of magnets, RF cavities, absorbers, etc.,
which has these properties is well beyond the scope of this document.

1 INTRODUCTION

In this document, I develop a procedure in the form of a Mathematica notebook, which leads to the
most important parameters of a muon cooling channel that achieves assumed performance param-
eters. I first assemble the equations that govern ionization cooling. In Chapter 2, I consider purely
transverse cooling, following [1]. In Chapter 3, I treat both transverse and longitudinal cooling
in styles due to Neuffer [2] and Wang and Kim [3]. I discuss the similarities and discrepancies
in their results in detail, and develop my own notation. In Chapter 4, I apply my procedure and
notation to a few published cooling channels. In Chapter 5, I derive the parameters of the cooling
channels step by step. I start from assumed values of the initial, final and equilibrium emittances,
both transverse and longitudinal, the length of the cooling channel, and the material properties of
the absorber. I obtain cooling lengths and partition numbers, amplitude functions and limits on the
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dispersion at the absorber, length, aperture and spacing of the absorber, parameters of the RF sys-
tem that achieve the longitudinal amplitude function and bucket area needed. Finally, I compute
the merit factor that is meaningful only if muon losses along the channel for reasons other than
muon decay are negligible compared to the decay losses. In Chapter 6, I discuss the consequences
of changes in the input parameters, and summarise the lattice parameters needed to achieve the
assumed performance. The design proper of such a lattice, i.e. finding the precise arrangement of
magnets, RF cavities, absorbers, etc., which has these properties is well beyond the scope of this
document. My conclusions are in Chapter 7.

In the following a muon cooling channel may be either an open transport line or one or more
turns in a cooling ring.

2 TRANSVERSE COOLING

A typical channel for reducing the transverse normalised emittance of the muon beam consists
of liquid hydrogen targets in which the muon beam is decelerated and its normalised emittance
reduced, and of RF cavities that compensate the average energy loss in the targets. Between the
targets, the muon beam is focused, typically by solenoids that are arranged such that the amplitude
function β⊥ has a minimum at the targets. We arrive at the following differential equation for the
normalised transverse emittance ε⊥ with the negative cooling term from ionization and the positive
heating term from Coulomb scattering [1]:

dε⊥
ds

= − ε⊥
β2E

dE

ds
+
β⊥(13.6 MeV)2

2β3EµX0E
(1)

Here E is the total and Eµ the rest energy of the muon, β and γ are the associated relativistic
factors; dE/ds is the rate of energy loss in the hydrogen target, X0 is its radiation length. All
quantities in (1) may be functions of the distance s along the cooling channel. Both dε⊥/ds and
1/X0 are non-zero in the absorbers, and vanish elsewhere. The muon energy E, β and γ decrease
in the absorbers, and increase in the RF cavities.

We gain some insight by averaging all these quantities along the cooling channel. I postpone the
discussion of the exact meaning of averaging until Section 3.2, and don’t bother to put bars above
quantities or <> signs around them. We notice that cooling stops at the equilibrium emittance εeq

⊥ ,
that we find by putting dε⊥/ds = 0 above and solving for ε⊥:

εeq
⊥ =

(

dE

ds

)−1
β⊥(13.6 MeV)2

2βEµX0
(2)

In order to obtain a small ε⊥, we want an absorber with a large product X0
dE
ds

of radiation length
X0 and energy loss dE

ds
in an optical arrangement with small β⊥ at the absorber. By averaging

the s-dependent quantities in (1) we turn it into a first-order differential equation with constant
coefficients that we can solve in closed form:

ε⊥(s) = εeq
⊥ + (εi

⊥ − εeq
⊥ ) exp(−s/sc

⊥) (3)

Here sc
⊥ = β2E/(dE/ds) is the transverse cooling length, and εi

⊥ is the initial normalised trans-
verse emittance at s = 0, and ε⊥ → εeq

⊥ for s → ∞ as expected. In order to achieve an enhance-
ment at all of the transverse phase space density of the muons in a cooling channel, the cooling
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length s⊥ must be short compared to the muon decay length sd = βγcτµ, where τµ is the muon
lifetime at rest. Tab. 1 shows the effect of the equilibrium emittance εeq

⊥ on the length of a cooling
channel that reduces ε⊥ by a factor e. For εeq

⊥ → 0, we have s/s⊥ → 1.

Table 1: Scaled length s/sc
⊥ of a cooling channel that reduces the normalised transverse emittance

by a factor e as a function of the ratio εf
⊥/ε

eq
⊥ of final and equilibrium emittance.

εf
⊥/ε

eq
⊥ 2 3 5 10 20 50 100

s/sc
⊥ 1.489 1.275 1.1467 1.0679 1.0327 1.0128 1.0064

A common figure of merit M for a cooling channel is the product of the three ratios of initial
over final emittance in the x, y and s directions, multiplied by an exponential factor describing
the muon decay in the channel with decay time at rest τµ = 2.19703 µs and decay length cτµ =
658.654 m:

M =
ε0

x

εf
x

ε0
y

εf
y

ε0
s

εf
s

exp

(

− s

βγcτµ

)

(4)

M is meaningful only if muon losses along the channel due to reasons other than muon decay are
negligible compared to the decay losses.

3 TRANSVERSE AND LONGITUDINAL COOLING

We now apply the same recipe to cooling channels that cool muon beams both transversely and
longitudinally. A small amount of longitudinal cooling is already present in a typical channel
for transverse cooling, if the energy loss dE/ds is an increasing function of E within the range
of muon energies. This is the case if the muon momenta are larger than about 300 MeV/c. In
practice, longitudinal cooling is typically done by wedge-shaped absorbers installed where muons
of different momenta are transversely separated by having non-zero dispersion D at the absorber.

3.1 Neuffer Style

Neuffer has given the differential equations for transverse and longitudinal cooling [2]. His style
works for cooling channels with observation points outside the solenoid focusing fields. His equa-
tion for the normalised transverse emittance ε⊥ is:

dε⊥
ds

= −ε⊥g⊥
β2E

dE

ds
+
β⊥(13.6 MeV)2

2β3EµX0E
(5)

The dimension of ε⊥ is a length as in (1). The new factor g⊥ = 1−D`′/`0 is the transverse partition
number analogous to the partition numbers in synchrotron radiation damping, `′/`0 is the relative
transverse rate of change of the absorber length, and `0 is the length of the absorber at vanishing
energy error.

Neuffer’s equation for the normalised longitudinal emittance ε‖ in units of energy and phase
(E, φ) is:

dε‖
ds

= −ε‖g‖
β2E

dE

ds
+
β‖
2

d〈∆E2〉
ds

(6)
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The longitudinal partition number g‖ consists of two parts, the first is due to the variation of dE/ds
with βγ, and vanishes in the neighbourhood of βγ ≈ 3, the second is due to the wedge absorbers:

g‖ =
2γ2 − 2 ln[K(γ2 − 1)]

γ2 ln[K(γ2 − 1)] − (γ2 − 1)
+
D`′

`0
(7)

Here K = 2mec
2/I , and mec

2 is the electron mass. The ionization potential is I = 16Z0.9 eV,
and Z is the atomic number. In a cooling ring with circumference C, slip factor η, muon energy
E, harmonic number h, RF wavelength λRF, peak RF voltage V , average RF voltage gradient
V ′ = V/C, and stable phase angle ϕs, counted from the last zero crossing (or from the last peak?),
Neuffer defines the longitudinal amplitude function at the absorber β‖ as follows:

β2
‖ =

2πη

β3γeV ′λRFEµ sinϕs

(8)

The dimension of β‖ is the reciprocal of an energy. Section 3.4.1 discusses the relations between
Neuffer’s β‖, Wang and Kim’s βL, βs printed by MAD, and my calculation from first principles.
Neuffer gives the following expression for the heating term due to straggling:

d〈∆E2〉
ds

= 4π(reγmec
2)2ne(1 − β2/2) (9)

Here ne = NAρZ/A is the electron density in the material, NA is Avogadro’s number, re the
classical electron radius, ρ the density, A the atomic weight. The sum of the partition numbers
over the two transverse and on longitudinal plane becomes:

∑

g = 2 − 2γ2 − 2 ln[K(γ2 − 1)]

γ2 ln[K(γ2 − 1)] − (γ2 − 1)
(10)

The fact that the wedge parameter D`′/`0 does not appear suggests considering them partition
numbers. A cooling channel cools both longitudinally and transversely if all partition numbers are
positive. This implies that 0 ≤ D`′/`0 ≤ 1.

Having assembled all the pieces, we can proceed as in Chapter 2, and average all parameters
appearing in (5) and (6) over s. The two equilibrium emittances and the two cooling lengths
become:

εeq
⊥ =

(

dE

ds

)−1
β⊥(13.6 MeV)2

2βg⊥EµX0
(11)

εeq
‖ =

(

dE

ds

)−1
β2Eβ‖

2g‖

d〈∆E2〉
ds

(12)

sc
⊥ =

β2E

g⊥

〈

dE

ds

〉−1

(13)

sc
‖ =

β2E

g‖

〈

dE

ds

〉−1

(14)

The two cooling rates 1/sc are in the ratio of the partition numbers. In a typical cooling channel
with g⊥ ≈ g‖ ≈ 1/2, the transverse equilibrium emittance in (11) and the transverse cooling length
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in (13) are both about a factor of two larger than those given earlier. The closed solutions for both
transverse and longitudinal emittance have the form of (3) with the appropriate expressions for
initial and equilibrium emittances, and cooling lengths, i.e.

ε(s) = εeq + (ε0 − εeq) exp(−s/sc) (15)

3.2 The Meaning of Averaging

So far, I have not been specific about the meaning of averaging. Let us look what happens when the
absorber is diluted and made longer, perhaps up to the point where it occupies the whole cooling
channel. The expressions (2) and (11) for transverse equilibrium emittances all contain the factor
(dE/ds)X0. This product remains the same when the absorber is diluted, since dE/ds decreases
while X0 increases in the same proportion. Similarly, the longitudinal equilibrium emittance (12)
is proportional to the ratio (d〈∆E2〉/ds)/(dE/ds) in which both brackets are proportional to the
absorber density. Hence, this ratio is also independent of the absorber dilution. I believe that the
amplitude functions β⊥ and β‖ at the absorber should be used in (2), (11) and (12).

Since dE/ds appears alone in the cooling lengths (13) and (14) it should be multiplied by the
filling factor, i.e. the ratio of total absorber length over cooling channel length. Hence dE/ds is
enclosed in angular brackets in (13) and (14).

3.3 Wang and Kim Style

Wang and Kim used moment equations for a linear theory of ionization cooling in 6D phase space
[3]. They argued that the changes of emittance within a period of the cooling channel are small,
used averaging over the periods, and obtained equations for the equilibrium emittances and the
cooling lengths. The cooling channel may contain drift spaces, solenoids, dipoles, quadrupoles,
and RF cavities. In this section, the subscripts s and z mark the transverse and longitudinal motion,
respectively.

I tried to solve their system of coupled equations (32) to (36), assuming that all coefficients are
independent of s, so far without success, since Mathematica runs out of memory. However, their
equation (36) for the longitudinal emittance εz is independent of the other four equations, and can
be solved for εz(s) in closed form with the cooling length sz = 1/(2ec− + ∂δη) and equilibrium
emittance εeq

z = χzsz:

εz(s) = εz0 exp(−s/sz) + εeq
z [1 − exp(−s/sz)] (16)

This result has the same form as (15), and the desirable properties that εz(0) = εz0, the prescribed
initial value, and that εz → εeq

x for s → ∞. The result (16) for εeq
z agrees with (43) of Wang and

Kim, apart from the fact that they write bars on top of their quantities and I don’t.
Wang and Kim state that εa, εxy and εL are orders of magnitude smaller than εs and εz. Ne-

glecting them in their equation (32) decouples it from the other three equations. It can be solved in
closed form with cooling length ss = 1/(η − ec ) and equilibrium emittance εeq

s = χsss with the
result:

εs(s) = εs0 exp(−s/ss) + εeq
s [1 − exp(−s/ss)] (17)
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This result also has the same form as (15), and the desirable properties that εz(0) = εz0, the
prescribed initial value, and that εz → εeq

x for s → ∞. The next step is linking the parameters in
Wang and Kim notation to physical quantities.

e = | ~D| · | ~∂η|/2 (18)

c− = cos(θD − θW ) (19)

η =
1

pv

dE

ds
(20)

χz =
[

βLχδ + γL(D2
x +D2

y)χ
]

/2 (21)

χs = (βTχ+ Hsχδ) /2 (22)

χ =

(

13.6 MeV

pv

)2
1

X0
(23)

Hs = (Hx + Hy) /2 (24)

Here, θD and θW are the rotations of the dispersion vector and of the wedges. I see very good
reasons for making them equal, and putting c− = 1. The subscripted β and γ are the transverse
and longitudinal amplitude functions; Dx and Dy are the two components of the dispersion vector
~D; χ and χδ = 〈δ2〉 are the rates of change per unit length of the mean square transverse angles
due to multiple scattering and of the mean square relative momentum error due to straggling,
respectively. Hx and Hy are the usual functions Ha = γaD

2
a + 2αaDaD

′
a + βaD

′2
a , where the

subscript a is either x or y.
To simplify the notation, I assume that wedge absorbers whose length depends on the vertical

coordinate y are installed in places where Dx = 0 and Dy 6= 0, as in Balbekov’s ring cooler
[6]. Using (18) to (24) and assuming c− = 1, then yields for cooling lengths and equilibrium
emittances:

s−1
s = η − ec− =

1

pv

〈

dE

ds
− Dy

2

∂

∂y

(

dE

ds

)〉

(25)

s−1
z = 2ec− + ∂δη =

1

pv

〈

Dy
∂

∂y

(

dE

ds

)

+
∂

∂δ

(

dE

ds

)〉

(26)

εeq
s = χsss =

Eβ2

2

〈

βT

(

13.6MeV
pv

)2
1

X0
+ Hs〈δ2〉

dE
ds

− Dy

2
∂
∂y

(

dE
ds

)

〉

(27)

εeq
z = χzsz =

Eβ2

2

〈

βL〈δ2〉 + γLD
2
y

(

13.6MeV
pv

)2
1

X0

Dy
∂
∂y

(

dE
ds

)

+ ∂
∂δ

(

dE
ds

)

〉

(28)

Both (25) and (26) have the dimension of an inverse length, as they should. Both (27) and (28)
have the dimension of a length, if βT , Hs, βL, and γL have the dimension of a length. I recall that
in this section, the subscripts s and z mark the transverse and longitudinal motion, respectively.

3.4 Comparison of the Results of Neuffer and Wang and Kim

In Sections 3.4.1 and 3.4.2, I give the relations between Neuffer’s longitudinal β-function β‖ and
longitudinal emittance ε‖ and their standard definitions in MAD [7]. I then compare the results of
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Neuffer and Wang and Kim in detail. In Section 3.4.3, I compare the transverse damping rates,
show that the second term in the square bracket of (25) is half of the corresponding term in g⊥
below (5), and give the reason. I derive in Section 3.4.4 on the longitudinal damping rate, that
(26) agrees with (7). In Section 3.4.5, my result for the variation of the energy loss with energy
in Section 3.4.5 agrees with Neuffer’s result (10). My results for the emittances in Sections 3.4.6
and 3.4.7 confirm that Neuffer uses normalised emittances, while Wang and Kim use geometrical
ones.

3.4.1 Definition of the Longitudinal β-Function

The goal of this section is finding the relation between Neuffer’s longitudinal β-function (8), and
standard definitions. MAD [7] computes α, β and γ functions in all three directions from the
linear 6D map R for one turn with the EMIT command. If R is 2× 2 block-diagonal, one can also
calculate the α, β and γ functions by hand. I write for the linear longitudinal map M for an arc
followed by an RF station, operating on the column vector (ct, δp/p)T :

M =

(

1 chη
fRFβ

2πfRFeV cos ϕs

Ecβ
1 + 2πηheV cos ϕs

Eβ2

)

(29)

Here, fRF is the RF frequency, and the origin of the stable phase angle ϕs is at the last zero crossing
of the RF voltage V . From (29) one finds to lowest order in the synchrotron tune Qs in agreement
with [8, 9]:

Qs =

√

−ηheV cosϕs

2πβ2E
(30)

βs =
c

fRF

√

− ηhE

2πeV cosϕs

=

√

− cηCE

2πβfRFeV cosϕs

(31)

The longitudinal motion is stable, and Qs is real and positive, if the product η cosϕs < 0. Hence,
we need 0 ≤ ϕs < π/2 below transition with η < 0, while we need π/2 < ϕs ≤ π above transition
with η > 0. It follows that (8) must be multiplied by cβE/(2πfRF) to obtain (31), remembering
that the origin of ϕs in (8) is at the crest of the RF wave, and that sin(ϕs − π/2) = − cosϕs.

βs =
cβE

2πfRF

β‖ (32)

Here, the factor cβ/(2πfRF) converts the longitudinal coordinate from RF phase to scaled time ct,
and the factor E converts the normalised β-function to the geometrical one. Note that βs has the
dimension of length, the same as the transverse β-functions.

3.4.2 Definition of the Longitudinal Emittance

The standard definitions of the normalised longitudinal emittance εs in units of m, and of εt in
units of eVs are:

εs =
√

〈(c∆t)2〉〈(∆E/(Eµ))2〉 (33)

εt =
√

〈(∆t)2〉〈(∆E)2〉 (34)

7



Here I neglect the cross correlation term 〈(c∆t)(∆E/(Eµ)〉. Neuffer’s definition of ε‖ contains
∆ϕ instead of ∆t or c∆t. It has the dimension of an energy. Hence, εs and εt are related to ε‖ by:

εs =
λRFε‖
2πEµ

(35)

εt =
ε‖

2πfRF

(36)

The ratio εs/εt = c/Eµ is numerically 2.8374 m/eVs. Using (32), and (35) or (36), we can express
(12) in terms of βs:

εeq
s =

(

dE

ds

)−1
ββs

2Eµg‖

d〈∆E2〉
ds

(37)

εeq
t =

(

dE

ds

)−1
ββs

2cg‖

d〈∆E2〉
ds

(38)

3.4.3 Transverse Damping Rate

With minimal changes of notation, Neuffer’s partition number g⊥ can be written:

g⊥ = 1 −Dy

∂
∂y

(

dE
ds

)

dE
ds

(39)

Inserting (39) into (14), and using β2E = pv, brings sc
⊥ into the form:

(sc
⊥)−1 =

1

pv

[

dE

ds
−Dy

∂

∂y

(

dE

ds

)]

(40)

This agrees with the Wang and Kim result (25), apart from the wedge term proportional to Dy,
which is twice as large. This discrepancy is due to Neuffer treating a quadrupole channel, and Wang
and Kim treating a solenoid channel with x− y exchange symmetry. In the latter case, transverse
cooling is divided equally between the symmetrical and asymmetrical modes. The factor one half
in (25) is also absent in Wang and Kim’s treatment of a quadrupole channel [10].

3.4.4 Longitudinal Damping Rate

With minimal changes of notation, Neuffer’s partition number g‖ can be written:

g‖ =

∂
∂E

(

dE
ds

)

dp

ds

p

+Dy

∂
∂y

(

dE
ds

)

dE
ds

(41)

The first term is related to the variation of the energy loss with energy. The second term is related
to the wedges, and already in the form of the first term in (26). I introduce intermediate variables
into the first term in (41) and write:

g‖ = p

∂
∂δ

(

dE
ds

)

dδ
dE

dp
dE

dE
ds

+Dy

∂
∂y

(

dE
ds

)

dE
ds

(42)
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As in [3], δ = (p − p0)/p0 is the relative momentum error, p0 is the nominal momentum, and Eµ

is the rest energy of the muons. With the relativistic equations dδ
dE

= 1
γEµ

, dp
dE

= 1
cβ

, pc = βγEµ

we get:

g‖ =

∂
∂δ

(

dE
ds

)

dE
ds

+Dy

∂
∂y

(

dE
ds

)

dE
ds

(43)

Using (43) and β2E = pv in (14) yields:

(sc
‖)

−1 =
1

pv

[

∂

∂δ

(

dE

ds

)

+Dy
∂

∂y

(

dE

ds

)]

(44)

The result (44) agrees with (26).

3.4.5 Variation of Energy Loss with Energy

With A = 4πNAr
2
emec

2ρZ/A, Neuffer writes for the rate of energy loss, neglecting the density
effect by putting δ = 0:

dE

ds
= A

[

β−2 log(Kβ2γ2) − 1
]

(45)

Writing (45) as a function of βγ and constants, I find for

∂

∂βγ

(

dE

ds

)

=
2A (γ2 − log[Kβ2γ2])

β3γ3
(46)

The partial derivative with respect to δ, needed in (42) to (44), is βγ times larger than (46). The
ratio of βγ times (46) and (45), needed in (43), is:

∂
∂δ

(

dE
ds

)

dE
ds

=
2 [γ2 − logK(γ2 − 1)]

[γ2 logK(γ2 − 1) − (γ2 − 1)]
(47)

The result (47) agrees with Neuffer’s (9). For muons with p = 200 MeV/c in liquid hydrogen, it is
numerically −0.294874. It vanishes at p = 377.6 MeV/c.

3.4.6 Transverse Equilibrium Emittance

With little effort, (11) can be brought into the form:

εeq
⊥ =

β3γE

2







β⊥
(

13.6MeV
pv

)2
1

X0

dE
ds

−Dy
∂
∂y

(

dE
ds

)





 (48)

Comparing (48) to (27) shows four things: (i) The heating term Hs〈δ2〉 due to the coupling of the
energy straggling to the betatron oscillations is absent. Neuffer [11] has shown that it is small com-
pared to the cooling term in a typical cooling channel. In Section 5.2, I shall derive the conditions
for this also to be true in my designs. (ii) There is an extra factor βγ in front of the large brackets.
This is consistent with Neuffer using normalised emittances and Wang and Kim using geometrical
ones. (iii) The wedge term is multiplied byDy instead ofDy/2. We have seen this factor already in
(40), and discussed it in Section 3.4.3. (iv) The remaining coefficients in the large brackets agree,
if βT and Hs are the usual transverse amplitude functions β⊥ and H.
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3.4.7 Longitudinal Equilibrium Emittance

My version of Neuffer’s equation for the longitudinal equilibrium emittance (37) can be brought
into the form:

εeq
s =

βγE

2





βs
d〈(∆E/E)2〉

ds

∂
∂δ

(

dE
ds

)

+D ∂
∂y

(

dE
ds

)



 (49)

Remembering, that ∆E/E = β2∆p/p and that the Wang and Kim parameter 〈δ2〉 is the rate
of change per unit length of the relative momentum error, we see that the factor in front of the
large brackets agrees with Wang and Kim’s (28), with the understanding that Neuffer and I use
normalised emittances, and Wang and King use geometrical ones. The denominators in the large
brackets agree too. In the numerator between the large brackets in (49), the heating term due to
multiple scattering, the second term in Wang and Kim’s (28) is absent. In Section 5.2, I shall derive
the condition for it to be small compared to the cooling term. Apart from this discrepancy, (49)
and (28) agree, if the dimension of βL is metres as that of Dy, βs and X0, and the dimension of γL

is inverse metres as that of γs.

4 PUBLISHED COOLING CHANNELS

In this chapter I apply the equations to some published cooling channels. Tab. 2 shows the results.
The first two columns refer to the purely transverse cooling channels in Study I [4] and Study II [5],
respectively. I can use the formulae in Chapter 2. The cooling channel in Study I has two absorbers
in a lattice period. The cooling channel in Study II is “tapered”. The transverse amplitude function
varies from about 0.35 m to about 0.18 m, while the period length changes from 2.75 m to 1.65 m.
I use the values at the end. The third column shows the parameters of a ring cooler, designed by
Balbekov [6], that cools both transversely and longitudinally. It uses liquid hydrogen absorbers
in dispersion-free regions for transverse cooling, and wedge shaped LiH absorbers, which occupy
half of the vertical aperture, in regions with vertical dispersion for longitudinal cooling. At least
for Study I, the merit factor M , calculated from (4), is quite misleading, since it ignores the severe
muon losses at the beginning of the cooling channel.

5 COOLING CHANNEL DESIGN PARAMETERS

Our goal is finding a practicable design for a cooling channel that cools a muon beam with as-
sumed initial to assumed final emittances. The former are determined by the properties of the
muon collection system, the latter by those of the muon acceleration and storage systems. The
equilibrium emittances should be smaller than the final ones by a good factor, as shown in Chap-
ter 2. Compromises on this goal should only be considered, once unsurmountable difficulties have
been encountered in the design of a real cooling channel.

As an application I use cooling channels with parameters shown in Tab. 3. The nominal chan-
nel is in column 1. It is supposed to cool a muon beam with parameters corresponding to Study II
parameters at 186 m from the source [12] to transverse parameters similar to those in Study II, and
in addition to cool longitudinally by a factor of three in emittance. Remember that the transverse
equilibrium emittance in a cooling channel, which cools both transversely and longitudinally, is
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Table 2: Parameters of published cooling channels. The radiation length X0 is for liquid hydrogen
absorbers without windows. Windows on absorbers and RF cavities reduce X0 and increase the
equilibrium emittances. The channel length and the final emittances of the ring cooler are shown
for 15 turns.

Parameter Study I Study II Ring
Muon momentum p/MeV/c 200 200 225.6
Period length LP /m 2.2 1.65 18.5
Channel length S/m 165 107.8 554.4

Straight liquid H2 Absorber
Absorber length LA/m 2·0.126 0.21 1.28
Loss rate dE/ds/MeV/m 31.75 31.75 31.75
Radiation length X0/m 8.66 8.66 8.66
Ampl. function β⊥/m 0.35 0.18 0.26

Wedge LiH Wedge Absorber
Absorber length LW /m − − 0.14
Loss rate d2E/ds/dy/MeV/m2 − −
Radiation length X0/m − − 1.02
Ampl. function β⊥/m − − 0.50
Dispersion Dy/m − − 0.47
Initial transv. emittance εi

⊥/mm 15 12 12
Final transv. emittance εf

⊥/mm 2 2.7 2.1
Equil. transv. emittance εeq

⊥ /mm 1.26 0.648
Transv. cooling length sc

⊥/m 56.5 63.0
Initial long. emittance εi

‖/mm − − 15
Final long. emittance εf

‖ /mm − − 6.3
Equil. long. emittance εeq

‖ /mm − −
Long. cooling length sc

‖/m − −
Merit factor M 49.3 18.1

about a factor of two larger than that in a channel that cools only transversely. I assume that the
channel length is S = 200 m. Here S is the length of an open channel, or the product of circum-
ference and number of turns of a ring cooler. The remaining columns show the consequences of
varying the input parameters. The input parameters in the upper part of Tab. 3 are the starting point
for my design procedure that is written as a Mathematica notebook. In order to achieve the design
parameters, the cooling channel must have the parameters in the lower part of Tab. 3 which I shall
now derive.

In this first round of the design procedure, I use Neuffer’s equations that apply to a quadrupole
cooling channel, and neglect the extra cross-plane heating terms in Wang and Kim’s equations, due
to dispersion at the wedge-shaped absorbers. However, I use a comparison of the heating terms to
derive upper limits for the vertical dispersion at the wedge absorbers.
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Table 3: Parameters of cooling channels. The nominal channel is in column 1. The other columns
show variants. Parameters that apply to both horizontal and vertical motion are labelled transverse
and have a subscript ⊥. Parameters that apply only to the horizontal or vertical plane are labelled
horizontal or vertical and have a subscript h or v. Longitudinal parameters have a subscript ‖.
At the wedge absorbers, Dx = 0 and Dy 6= 0. Slip factor and RF frequency are listed at the
intersection of the limits due to βs and bucket height bRF = 2∆p/p = 0.2. The stable phase angle
is ϕs = 2π/3. Input parameters are above the horizontal line. Calculated parameters are below it.

Column 1 2 3 4 5
Muon momentum p 200 200 200 200 200 MeV/c
Initial transv. emittance εi

⊥ 10 10 10 10 10 mm
Final vert. emittance εf

v 3 3 5 3 5 mm
Equil. vert. emittance εeq

v 1 1 2 1 2 mm
Initial long. emittance εi

‖ 150 150 150 150 150 mm
Final long. emittance εf

‖ 50 50 50 30 30 mm
Equil. long. emittance εeq

‖ 15 15 15 10 10 mm
Channel length S 200 300 200 200 300 m
Vert. cooling length sc

v 133 199 204 133 306 m
Long. cooling length sc

‖ 148 222 148 103 154 m
Vert. partition number gv 0.372 0.372 0.297 0.307 0.236
Wedge parameter Dy`

′/`0 0.628 0.628 0.703 0.693 0.764
Hor. cooling length sc

h 49.4 74.1 60.5 40.9 72.3 m
Equil. hor. emittance εeq

h 0.372 0.372 0.593 0.307 0.473 mm
Final hor. emittance εf

h 0.540 0.540 0.939 0.380 0.623 mm
Long. partition number g‖ 0.334 0.334 0.408 0.398 0.469
Average acceleration 〈dE

ds
〉 3.6 2.4 2.9 4.3 2.4 MeV/m

Absorber occupancy factor 11.3 7.5 9.2 13.6 7.7 %
Transv. β-function β⊥ 103 103 165 85.4 131 mm
Length of absorbers LA 206 206 330 171 263 mm
Channel period length LP 1.83 2.75 3.58 1.25 3.41 m
Init. hor. beam radius σi

x 23.4 23.4 29.5 21.2 26.3 mm
Init. hor. divergence σi

x
′ 226 226 179 249 201 mr

Straggling rate d〈∆E2〉/ds 3.3 3.3 3.3 3.3 3.3 MeV2/m
Long. β-function βs 11.5 11.5 14.1 9.14 10.8 m
Min. dispersion |Dy| 44 44 62 44 60 mm
Max. dispersion |Dy| 297 297 474 246 378 mm
Slip factor η 0.320 0.214 0.320 0.308 0.205
RF frequency fRF 14.3 14.3 11.7 18.0 15.3 MHz
Merit factor M 158 146 54.5 373 126
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5.1 Cooling Lengths and Partition Numbers

I assume as before that the horizontal dispersion Dx vanishes at the absorbers, while the vertical
dispersion Dy does not. Then the vertical and longitudinal partition numbers are 0 < gv, g‖ < 1,
while the horizontal partition number gh is always unity [2]. In the first step of my procedure, I get
the vertical and longitudinal cooling lengths by solving (15) for sc

v and sc
‖, respectively:

sc
v = S log

εi
⊥ − εeq

v

εf
v − εeq

v

sc
‖ = S log

εi
‖ − εeq

‖

εf
‖ − εeq

‖

(50)

The cooling lengths are proportional to the channel length S, and have a logarithmic dependence on
the initial, final, and equilibrium emittances. I use Neuffer’s result (13) and (14), that the product
of cooling length and partition number is the same in both planes, to obtain the partition numbers
gv and g‖, and hence the wedge parameter D`′/`0 = 1 − gv.

Since gh = 1, both the horizontal cooling length sc
h and the horizontal equilibrium emittance

εeq
h are gv times smaller than the vertical ones. The final horizontal emittance, obtained from (15),

is even smaller than the vertical equilibrium emittance. Hence, the two transverse emittances will
be different at the end of the cooling channel if they are equal at its beginning, and if the horizontal
and vertical β-functions at the absorber are also the same. It is possible to achieve εf

h ≈ εf
v , by

making horizontal cooling less efficient, and using βh > β⊥, and hence εeq
h > εeq

v .
The cooling lengths lead directly to the average rate of energy loss in the absorbers 〈dE/ds〉,

by solving (13) and (14). In order to get the cooling lengths listed, the average rate of energy loss
is about 2.5 MeV/m. For given emittances, the average rate of energy loss is inversely proportional
to the channel length.

5.2 Amplitude Functions and Dispersion

We get an upper limit of the vertical amplitude function at the absorbers β⊥ due to the transverse
equilibrium emittance by solving (11):

β⊥ ≤ 2βg⊥EµX0ε
eq
⊥

(13.6MeV)2

(

dE

ds

)

(51)

From the parameters of the absorber, we can calculate the mean square energy variation d〈∆E2〉/ds
due to straggling, using (9), and an upper limit for the longitudinal amplitude function βs due to
the longitudinal equilibrium emittance, using (37):

βs ≤
2Eµg‖ε

eq
s

β





dE
ds

d〈∆E2〉
ds



 (52)

The fraction in the large brackets depends only on the absorber material. The amplitude functions
β⊥ and βs, and the lengthLA of the absorber are essentially proportional to the products of partition
number and equilibrium emittance gεeq.

The absolute value of the vertical dispersion |Dy| at the absorbers has a lower limit due to the
wedge parameter, since it would be nice if the absorber length were positive in the whole vertical
aperture. Taking an aperture radius equal to three RMS beam radii σy, I find:

|Dy| ≥ 3(1 − gv)σy = 3(1 − gv)
√

εi
⊥β⊥/(βγ) + (Dyσi

e)
2 (53)
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Here σi
e is the initial relative RMS momentum spread. Solving (53) for |Dy| yields:

|Dy| ≥ 3(1 − gv)

√

√

√

√

εi
⊥β⊥

βγ[1 − (3(1 − gv)σi
e)

2]
(54)

|Dy| is real and positive if 3(1 − gv)σ
i
e ≤ 1. This condition is also found by assuming that σy

is dominated by σi
e, and neglecting the contribution of the betatron oscillations. Upper limits to

|Dy| are due to the cross-plane heating terms of the equilibrium emittances (27) and (28). If the
absorber is at a waist of the beam envelope with γ⊥ = 1/β⊥ and D′

y = 0, we have H = D2
y/β⊥.

Hence, the heating term due to energy straggling is smaller than or equal to the heating term due
to multiple scattering in (27), if the following condition holds:

|Dy| ≤
β⊥(13.6MeV/pv)

√

X0〈δ2〉
(55)

Applying a similar argument to (28), the heating term due to multiple scattering is smaller than or
equal to the heating term due to energy straggling, if |Dy| satisfies:

|Dy| ≤
βs

√

X0〈δ2〉
(13.6MeV/pv)

(56)

I recall that, in (55) and (56), 〈δ2〉 is the rate of change per unit of length of the relative momentum
error due to straggling. Tab. 3 shows the limits from (54) and (55). The limit from (56) is much
higher. When Dy is one half of (55) or (56), then the cross-plane heating term contributes one
quarter of the in-plane heating term to the equilibrium emittance.

5.3 Absorbers

I assume that there is one kind of wedge-shaped, liquid hydrogen absorber with a loss rate dE/ds =
31.75 MeV/m and a radiation length X0 = 8.66 m. The absorber occupancy factor is simply the
ratio of 〈dE/ds〉 and the assumed rate of energy loss dE/ds in the absorber. The length of an
individual absorber LA should not be larger than 2β⊥, in order to limit the value of the β-function
at the ends of the absorber to be at most 2β⊥. Dividing LA by the absorber occupancy factor yields
an upper limit for the spacing between neighbouring absorbers, and hence the length of a period
LP in the cooling channel. An obvious improvement of the theory would be replacing β⊥ by a
suitable average over the length of the absorber. The arithmetic mean is 〈β⊥〉 = 4β⊥/3.

The initial horizontal RMS beam radius σx and both divergences σx′ and σy′ at the centre of
the absorber follow from the initial transverse emittance εi

⊥ and β⊥, assuming that Dx, D′
x and D′

y

vanish there:

σx =

√

√

√

√

εi
⊥β⊥
βγ

σx′ = σy′ =

√

√

√

√

εi
⊥

βγβ⊥
(57)

The vertical dispersion Dy and the RMS momentum spread contribute to the vertical RMS beam
σy. To get an upper limit for σy, one might use (55) and 1/3 of the bucket height. At either end of
the absorber, σx is larger by a factor

√
2, while σy is larger by almost as much. Both σx′ and σy′ are

not small compared to unity, invalidating the par-axial approximation in beam dynamics. Palmer
reminded me that this is a generic feature of cooling channels with a factor as large as ten between
initial and equilibrium transverse emittances and constant β⊥. Tab. 3 shows σx and σx′ .
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5.4 RF System and Longitudinal Dynamics

The RF system must do three things: (i) Compensate the energy loss in the absorbers, (ii) achieve
the assumed initial longitudinal equilibrium emittance by having a value of βs that satisfies (52),
(iii) have a bucket height large enough to accept the momentum spread in the beam, (iv) have a
bucket area that matches or is smaller than the initial longitudinal emittance εi

‖. The average rate
of acceleration in the RF cavities is equal to the average rate of energy loss 〈dE/ds〉, if the muon
energies at the entrance and the exit of the cooling channel are the same. It was already derived
in Section 5.3. The average voltage gradient inside the RF cavities is higher than the average rate
of acceleration for two reasons: (i) The RF cavities occupy only a fraction of the channel length,
and (ii) the peak voltage gradient is higher than the accelerating gradient when the muons are
accelerated off the crest of the RF wave form.

The conditions on βs and bucket area also involve the longitudinal dynamics, and include the
slip factor η. Below, I avoid fixing the sign of η and the quadrant of ϕs by taking absolute values
where needed. By suitably arranging (31), introducing the circumference C of the cooling ring,
which will promptly drop out of the equations, and using eV | sinϕs| = C〈dE/ds〉, we find for the
ratio |η|/fRF, needed to satisfy the condition (52) on βs:

|η|
fRF

≤ 2πββ2
s〈dE/ds〉

cE tanϕs
(58)

The second relation between η and fRF follows from the requirement that the relative half
bucket height bRF is large enough to accept the relative RMS momentum spread in the beam ∆p/p,
assuming bRF = 2∆p/p. The relation can be written in the form:

fRF|η| =
Y 2(ϕs)

sinϕs

〈dE/ds〉c
4πβE

(

∆p

p

)−2

(59)

Here Y (ϕ) =
√

|(π − 2ϕ) sinϕ− 2 cosϕ| with Y (0) =
√

2 describes the dependence of bRF on
the stable phase angle ϕ. Fig. 1 shows the upper limits for the absolute value of the slip factor η
as a function of the RF frequency fRF, caused by βs from (58), and due to three bucket heights
from (59) for ϕs = 2π/3. Doubling the bucket height reduces the values of |η| and fRF at the
intersection by a factor of two.

A third relation between η and fRF follows from the requirement that the bucket area is at least
4π times the initial longitudinal emittance εi

‖. The factor 4π might also be 6π or 9π. Remember
that the traditional formula for the bunch area is the true area, while my definition of the emittance
is the product of the standard deviations. Comparing emittance and bucket area implies that the
bunches are matched to the buckets at the entrance to the cooling channel. If this is not true, a
comparison between momentum spread and bucket height, or between bunch length and bucket
length, is more appropriate. The relation can be written in the form:

|η|f 3
RF ≤ 2α2(ϕs − π/2)〈dE/ds〉γ

(πεi
‖)

2Eµ sinϕs

(

βc

π

)3

(60)

Here, α(ψ) is a bucket area function, with the origin of ψ at the crest of the RF wave, and α(0) = 0
and α(π/2) = 1. Dôme [13] gives a series expansion for α(ψ). Fig. 2 shows it.
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Figure 1: Upper limits for the slip factor |η| as
function of RF frequency in MHz at ϕs = 2π/3.
The straight red curve shows the limit due to βs.
The yellow, green and blue hyperbolic curves
from above show the limits for relative RMS
momentum spreads ∆p/p = 0.075, 0.1, 0.15.
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Figure 2: Bucket area function α(ψ) as a func-
tion of ψ in degrees. The origin of ψ is at the
crest of the RF wave. At ψ = 90◦ the value
should be unity. The difference is caused by the
series expansion.
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Fig. 3 shows the upper limits for the absolute value of the slip factor η as a function of the RF
frequency fRF for ϕs = 2π/3, due to βs from (58), and due to three bucket areas from (60).
Increasing the bucket area in the ratio 9/4 reduces the values of |η| and fRF at the intersection by

a factor 3/2 =
√

9/4. Fig. 4 shows the upper limits for |η| as a function of the RF frequency fRF

for three stable phase angles ϕs = 5π/6, 3π/4, 2π/3, due to βs from (58), and due to a bucket area
1.35π m from (60). Reducing the stable phase angle from 5π/6 to 2π/3, and reducing the peak
RF voltage in the ratio

√
3, reduces |η| by about a factor 6 and fRF by about a factor 3/2. I do not

necessarily propose to operate a muon cooling channel at values of |η| and fRF where the limiting
curves intersect. I simply take them as a starting point for scaling. Doubling fRF reduces |η| by a
factor of eight when the bucket area is the limit, and by a factor of two when the bucket height is
the limit.

The relative bucket height bRF in Tab. 3 is 0.2 for the nominal cooling channel. Hence, at the
nominal values of |η| and fRF muons with momenta between 160 and 240 MeV/c are inside the
bucket. If this range is not considered large enough, the RF system must be operated at a higher
frequency. If fRF is scaled up at constant bucket area and constant stable phase angle ϕs, the
bucket height is proportional to fRF. I repeat that constant bucket area implies scaling |η| down
like 1/f 3

RF.
The maximum permissible value of the absolute value of the slip factor |η| as a function of the

RF frequency fRF is given by up to three phenomena: (i) at low fRF, |η| ∝ fRF is determined

16



0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

Figure 3: Upper limits for the slip factor |η| as
function of RF frequency in MHz at ϕs = 2π/3.
The straight red curve shows the limit due to βs.
The yellow, green and blue hyperbolic curves
from above show the limits for bucket areas
0.6π, 0.9π and 1.35π m.
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Figure 4: Upper limits for the slip factor |η|
as function of RF frequency in MHz for ϕs =
5π/6, 3π/4, 2π/3 from above. The straight
curves show the limits due to βs. The hyper-
bolic curves show the limits for a bucket area
1.35π m.

by βs from (58); (ii) at high fRF, |η| ∝ f−3
RF is determined by the bucket area from (60); (iii) at

intermediate values of fRF, |η| ∝ 1/fRF is determined by the bucket height from (59). Depending
on the parameters of the cooling channel, this limit may be higher than the other two.

5.5 Merit Factor

The merit factor M is calculated from (4). It is meaningful only if losses along the channel for
reasons other than muon decay are negligible compared to the decay losses.

6 DISCUSSION

In this chapter, I first discuss the consequences of changing one or more of my input parameters.
Finding a lattice for a cooling channel, i.e. the precise arrangement of magnets, RF cavities, ab-
sorbers, etc., is well beyond the scope of this paper. However, I summarise in Section 6.2 the
parameters that such a lattice must have in order to fulfil its purpose.

6.1 Consequences of Changes in Input Parameters

Tab. 3 shows the parameters of the nominal cooling channel in the first column. The other columns
show the consequences of changing input parameters.

• The length of the cooling channel is increased in the second column. This increases the
cooling lengths sc

h, sc
v, sc

‖ and the channel period length LP in the same proportion, and
decreases the average acceleration 〈dE/ds〉, the absorber occupancy factor and the limit on
the slip factor η in inverse proportion. The merit factor decreases because of the smaller
fraction of surviving muons. The other parameters remain the same.
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• The final and equilibrium values of the vertical emittance are increased in the third column.
This increases the vertical cooling length, but leaves the longitudinal one unchanged. This is
achieved by increasing the longitudinal partition number, and decreasing the vertical one. All
changes of the other calculated parameters are a consequence. The most noticeable changes
are the increases of β⊥, LA and LP , and the reduction of M by almost a factor of three.

• The final and equilibrium values of the longitudinal emittance are decreased in the fourth col-
umn. This decreases the longitudinal cooling length, but leaves the vertical one unchanged.
As in the third column, this is achieved by increasing the longitudinal partition number, and
decreasing the vertical one. This channel is more difficult, having higher 〈dE/ds〉, absorber
occupancy factor, and smaller β⊥, LA and LP . Its merit factor M is more than twice that in
the first column.

• The fifth column shows a cooling channel with all three previous changes combined, i.e. it is
longer, and has less vertical and more longitudinal cooling than the nominal channel in the
first column. All its parameters are “easier”, but it still has almost the same merit factor M .

6.2 Lattice and RF System

The lattice transports and focuses the muon beam along the cooling channel. The RF system
compensates the ionization loss in the absorbers and focuses the muon beam inside RF buckets. In
order achieve the assumed performance, it must have the properties listed in Tab. 3:

• The β-functions at the absorber β⊥ and βs must not be larger than those derived in (51) and
(52), in order to achieve the assumed equilibrium emittances.

• The horizontal dispersion Dx = 0 at the absorber must vanish, and the absolute value of the
vertical dispersion |Dy| must be within the limits (54) and (55), in order to achieve a positive
absorber length across the vertical aperture, and to avoid excessive cross-plane heating, and
the associated increase in the equilibrium emittances.

• The wedge-shaped liquid hydrogen absorbers must have length LA and wedge parameter
Dy`

′/`0 as shown in Tab. 3. Their spacing must be smaller than or equal to LP .

• The lattice must provide the space for the RF system that makes up for the energy loss in
the absorbers. At a stable phase angle ϕs = 2π/3, the average peak voltage gradient of
the channels in Tab. 3 is at least between 2.1 and 3.9 MV/m, assuming that the RF system
occupies all the space not taken by the absorbers. Practically feasible RF voltage gradients
determine the length of the cooling channel.

• The slip factor η and the RF frequency fRF must provide a bucket area matched to the initial
longitudinal emittance. This is achieved by the combination of |η| and fRF shown in Tab. 3.
For higher values of fRF, the bucket area is constant if the ratio |η|/f 3

RF is held constant. For
every factor of two in fRF, |η| goes down by a factor of eight. At constant bucket area and
constant stable phase angle, the bucket height, which determines the accepted momentum
range, is proportional to fRF.
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7 CONCLUSIONS

A procedure was developed for the calculation of parameters for muon cooling channels that
achieve a prescribed performance. It is meant to be used as the first step in the design proper
of such a channel, which finds an arrangement of practical magnets, RF cavities and absorbers that
meets the required parameters.

The procedure is written in Mathematica . It starts with assumed values for initial, final and
equilibrium beam emittances, material properties of the absorbers for ionization cooling, and the
length of the channel. It derives first the e-folding lengths for ionization cooling in the vertical,
horizontal and longitudinal direction, and the associated partition numbers. It finds upper limits
for the transverse and longitudinal amplitude functions at the absorbers, and uses them to deter-
mine absorber parameters such a length, aperture radius, wedge parameter, and spacing between
neighbouring absorbers. A finite value of the dispersion, assumed to be in the vertical direction,
is needed to achieve both transverse and longitudinal cooling. The procedure calculates lower and
lower limits for its absolute value. The RF system compensates the muon energy loss in the ab-
sorbers, and occupies most of the space between them. Relations between its parameters, such as
frequency fRF, stable phase angle ϕs, bucket area and height, lattice parameters such as the abso-
lute value of the slip factor η, and muon beam parameters such as longitudinal emittance ε‖ are
used to find consistent parameter sets which are the starting point for further scaling. The scaling
laws are given.

The procedure is first applied to find the parameter of a “nominal” muon cooling channel. The
consequences of changing the input parameters a few at a time are presented. They indicate the
changes needed to make cooling channels “easier” to build without compromising their perfor-
mance. Further explorations of parameter space can be done very quickly.
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