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Abstract

In recent papers [1, 2] Qin and Davidson have generalized Courant-Snyder (CS) theory for one

degree of freedom to the case of coupled transverse dynamics with two degrees of freedom. The

generalized theory has four basic components of the original CS theory, i.e., the envelope equation,

phase advance, transfer matrix, and the CS invariant, all of which have their counterparts in the

original CS theory with remarkably similar expressions. In this paper, we further investigate this

remarkable similarity between the original and generalized CS theory, and construct the Twiss pa-

rameters and beam matrix in generalized form, which can be used to provide a practical framework

for accelerator design, transverse beam measurement and control, and particle tracking studies.

In particular, it is shown that choosing the appropriate initial conditions for the matrix envelope

equation is important to be consistent with the symplectic condition of the transfer matrix, and

to simplify the calculation of the beam matrix. As an illustrative example, the generalized form of

the Twiss parameters and beam matrix has been applied to the case of a helical transport channel,

where the two transverse motions are strongly coupled.
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I. INTRODUCTION

In recent papers [1, 2] Qin and Davidson generalized the Courant-Snyder theory [3–6] for

one degree of freedom to the case of coupled transverse dynamics with two degrees of free-

dom using a time-dependent canonical transformation technique. Although there are several

alternative parametrization methods for coupled transverse dynamics, such as the Teng-

Edward parametrization [7, 8], the Mais-Ripken parametrization [9–11], the normal form

method [12], and the SLIM formalism [13], the Qin-Davidson parametrization is noteworthy

in the sense that it retains four basic components of the original Courant-Snyder theory, i.e.,

the envelope equation, phase advance, transfer matrix, and the Courant-Snyder invariant,

with remarkably similar expressions to their counterparts in the original Courant-Snyder the-

ory. This feature provides a formulation closer in structure to the original Courant-Snyder

theory, and enables one to deal with more complicated coupled dynamics in the context of

the well-established Courant-Snyder formalism. In this paper, we further investigate this

remarkable similarity between the original and generalized Courant-Snyder theory, and con-

struct the Twiss parameters (α, β, and γ) and beam matrix (Σ) in generalized forms, which

can provide a practical framework for accelerator design, transverse beam measurement and

control, and particle tracking studies.

The organization of this paper is the following. In Sec. II, we introduce the generalized

Courant-Snyder theory based on Refs. [1] and [2]. The Twiss parameters and beam matrix

are formulated in generalized forms in Secs. III and IV, respectively. In Sec. V, we discuss

the uniqueness of the matched solutions to the matrix envelope equation. Finally, a numer-

ical example of the calculation of the Twiss parameters and beam matrix is given in Sec.

VI for the case of a helical transport channel.

II. GENERALIZED COURANT-SNYDER THEORY

The general form of the Hamiltonian for the coupled transverse dynamics is given by

Hc =
1

2
uT Acu, (1)

where

Ac =


 κ R

RT I


 , (2)
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u = (x, y, px, py)
T , (3)

κ(s) =


 κx κxy

κxy κy


 . (4)

Here, the 2 × 2 matrix κ(s) is time-dependent and symmetric (κ = κT ), R is an arbitrary,

time-dependent 2 × 2 matrix, and I is the 2 × 2 unit matrix. The variable s is the path

length that plays the role of a time-like variable. The superscript “T” denotes the transpose

operation of a matrix, and px(py) is the scaled canonical momentum variable conjugate to

the transverse coordinate x(y) relative to the reference orbit. For a combination of all the

linear components of a focusing lattice, i.e., the dipole, quadrupole, skew quadrupole, and

solenoidal components, we find [2, 11, 14]

κ(s) =


 Ω2 + κq + 1

ρ2
x

κsq + 1
ρxρy

κsq + 1
ρxρy

Ω2 − κq + 1
ρ2

y


 , (5)

R(s) =


 0 −Ω

+Ω 0


 , (6)

where κq is the quadrupole focusing coefficient, Ω is one-half of the normalized relativistic

Larmor frequency associated with the solenoidal lattice [15], κsq is the skew quadrupole

coefficient, and ρx(ρy) is the bending radius in the x(y)-direction associated with the dipole

field. Note that all of the elements in the matrices κ(s) and R(s) are generally time-

dependent.

If we apply the final results of the generalized Courant-Snyder theory obtained in Refs.

[1] and [2] to the Hamiltonian in Eq. (1), we can express the solution for the transverse

dynamics in terms of a time-dependent linear map from the initial condition u0, i.e.,

u(s) = Mcu0, (7)

where the transfer matrix Mc is given by

Mc = Q−1S−1P−1S0, (8)

Q−1 =


 QT

4 0

0 QT
4


 , (9)

Q4 =


 cos θ − sin θ

sin θ cos θ


 , (10)
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θ′ = Ω, (11)

S−1 =


 wT 0

w−1w′wT w−1


 , (12)

P−1 =


 P1 −P2

P2 P1


 , (13)

S0 =


 (w−1

0 )T 0

−w′
0 w0


 . (14)

Here, w is the 2× 2 envelope matrix satisfying the following non-commutative matrix enve-

lope equation [1, 2]

w′′ + wκ̃ = (w−1)T w−1(w−1)T , (15)

with

κ̃ = Q4κQ−1
4 , (16)

and (w0, w
′
0) denotes the initial conditions for w and w′. The prime denotes a derivative with

respect to s. The rotation matrix P−1 is determined from the generalized phase advance

equations

P ′
1 = P2βI , (17)

P ′
2 = −P1βI , (18)

where the matrix phase advance rate βI is

βI = (wwT )−1. (19)

The generalized Courant-Snyder invariant is

ICS
c = uT QT ST SQu. (20)

Derivation of these results using a time-dependent canonical transformation technique is

described in more detail in Refs. [1] and [2]. These results are the non-commutative gen-

eralization of the Courant-Snyder theory for one degree of freedom to the case of coupled

transverse dynamics with two degrees of freedom.
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III. TWISS PARAMETERS

In the original Courant-Snyder theory [3], the Twiss parameters α, β, and γ were in-

troduced and provided an important formulation to describe the evolution of the beam

distribution in trace space [16]. Therefore, in this section, we generalize the Twiss parame-

ters to the case of coupled transverse dynamics with two degrees of freedom using the matrix

envelope equation (15) and the generalized Courant-Snyder invariant defined in Eq. (20).

Using the fact that κ̃ is symmetric, we can rewrite the matrix envelope equation (15) in two

parts:

(wT w)′′ + κ̃(wT w) + (wT w)κ̃ = 2
[
(wT w)−1 + wT ′w′

]
, (21)

w′′wT = wwT ′′ . (22)

To obtain Eq. (21), we operate on Eq. (15) with wT (· · · ) + (· · · )T w. Similarly, Eq. (22)

is derived after operating on Eq. (15) with (· · · )wT − w(· · · )T . Due to the symmetric

property of the matrix equations, Eq. (21) gives three independent coupled differential

equations, while Eq. (22) gives only one. On the other hand, from the generalized form of

the Courant-Snyder invariant in Eq. (20), we note that the trace-space ellipse is determined

in the Larmor frame [15] by the matrix

ST S =


 w−1 −wT ′

0 wT





 (w−1)T 0

−w′ w




=


 (wT w)−1 + wT ′w′ −wT ′w

−wT w′ wT w


 . (23)

Comparing Eqs. (21) and (23), we define the generalized Twiss parameters as follows:

α = −wT w′, (24)

β = wT w, (25)

γ = (wT w)−1 + wT ′w′. (26)

Here, the generalized Twiss parameters α, β, and γ are 2 × 2 matrixes, and β = βT and

γ = γT , while α 6= αT in general. The differential equation for the beta-function matrix β

becomes

β′′ +
[
(κ̃β) + (κ̃β)T

]
= 2γ, (27)
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and the derivative of β yields

β′ = (wT w)′ = wT ′w + wT w′ = −(α + αT ), (28)

both of which are non-commutative generalizations of their counterparts in the original

Courant-Snyder theory with remarkably similar expressions. Here, we define β = wT w,

which is different from the definition in Refs. [1] and [2], where β is defined as β = wwT =

β−1
I .

Equation (22) also provides very valuable information. Integration by parts of Eq. (22)

yields

w′wT − wwT ′ = const.×

 0 1

−1 0


 , (29)

where the integration constant is arbitrary, and will be determined from the initial condi-

tions (w, w′)0 = (w0, w
′
0). Since the single-particle trajectory following Eq. (7) is indeed

independent of the choice of (w, w′)0, we have the freedom to choose the integration con-

stant. Here, we demonstrate that we should choose const. = 0 to be consistent with the fact

that the time-dependent symplectic matrix S in Eq. (12) gives the canonical transformation

[2]. From the differential equation that S satisfies, which is derived in Ref. [17], we find

β′Iw + 2βIw
′ = 0. (30)

Furthermore, the time derivative of the definition of the matrix phase advance rate, βIwwT =

I, leads to

β′Iw = −βI(wwT )′(wT )−1 = −βI

[
w′ + w(w−1w′)T

]
. (31)

Combining Eqs. (30) and (31), we obtain

w′wT = wwT ′ , (32)

which gives const. = 0 in Eq. (29). It should be noted that Eq. (32) gives only one

independent differential equation [see the explicit expression in Eq. (48) of Sec. V]. Equation

(32) makes the expression for S−1 much simpler, i.e.,

S−1 =


 wT 0

w−1w′wT w−1


 =


 wT 0

wT ′ w−1


 , (33)

and readily gives the matrix version of the familiar relation between α, β, and γ, i.e.,

βγ = I + wT wwT ′w′ = I + α2. (34)
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IV. BEAM MATRIX

To describe the beam distribution in the four-dimensional trace space (x, y, x′, y′), we

consider a multivariate Gaussian in the following form

f(X) = N exp

[
−1

2
XT Σ−1X

]
, (35)

where Σ = 〈XXT 〉 is the covariant matrix which will turn out to be the beam matrix,

and N = (2π)−2[det(Σ)]−1/2 is a normalization constant. For simplicity, we define X =

(x, y, x′, y′)T , and assume 〈X〉 = 0 (i.e., any centroid offset is disregarded, or the coordinates

are redefined with respect to the offset [18]). Because the transfer matrix introduced in Eq.

(7) is for the canonical variables u = (x, y, px, py)
T , we need to transform these variables

to trace-space (geometrical) variables X = (x, y, x′, y′)T , in which the beam distribution is

usually described (particulary for experimental measurements) [19]. For this purpose, we

introduce the following matrix

U(s) =




1 0 0 0

0 1 0 0

0 −Ω 1 0

+Ω 0 0 1




=


 I 0

R I


 , (36)

which gives u = UX. Note that det(U) = det(UT ) = det(U−1) = 1, while UT 6= U−1 in

general. From the generalized Courant-Snyder invariant in Eq. (20), and the definitions of

the generalized Twiss parameters in the previous section, we find

ICS
c = XT UT QT


 γ αT

α β


 QUX. (37)

For the Gaussian beam distribution considered here, the 4D rms trace-space ellipse can

be determined by the exp[−1/2] contour of the distribution function f(X) [16]. Therefore,

after setting ICS
c =

√
ε4D (which makes ε4D =

√
det(Σ) as in the usual convention), we find

1 = XT Σ−1X

=
1√
ε4D

XT UT QT


 γ αT

α β


 QUX. (38)

Furthermore, we obtain the following expression for the beam matrix

Σ =
√

ε4D × U−1QT


 γ αT

α β



−1

Q(UT )−1. (39)
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Using the property of the symplectic matrix, det
[
(ST S)−1

]
= 1, we can readily show

that det(Σ) = ε2
4D, as expected, and the volume enclosed by a 4D rms trace-space ellipse is

V4D = (π2/2)
√

det(Σ) = (π2/2)ε4D. If we apply Eq. (33), or equivalently Eq. (32), we can

further simplify the expression for the beam matrix. Because


 γ αT

α β



−1

= S−1(S−1)T

=


 wT w wT w′

wT ′w (wT w)−1 + wT ′w′




=


 β −α

−αT γ


 , (40)

we obtain a remarkably similar expression for the beam matrix as in the the original Courant-

Snyder theory. Note that Eq. (40) is valid because w′wT = wwT ′ . Finally, we assemble all

of the calculations together into the following explicit form:

Σ =




〈x2〉 〈xy〉 〈xx′〉 〈xy′〉
〈yx〉 〈y2〉 〈yx′〉 〈yy′〉
〈x′x〉 〈x′y〉 〈x′2〉 〈x′y′〉
〈y′x〉 〈y′y〉 〈y′x′〉 〈y′2〉




=
√

ε4D ×

 I 0

−R I





 QT

4 0

0 QT
4





 β −α

−αT γ





 Q4 0

0 Q4





 I −RT

0 I


 . (41)

Here, we note that Σ = ΣT .

As an illustrative example of the calculation of the beam matrix using Eq. (41), we con-

sider one of the two-dimensional subspaces of the four-dimensional trace space. Particularly

for beam profile measurements, the (x, y)-plane is the most obvious projection which shows

the beam cross section under the influence of the coupling [14]. In general, the beam cross

section becomes tilted due to the coupling, with tilt angle ξ given by

tan 2ξ =
2〈xy〉

〈x2〉 − 〈y2〉 . (42)

The tilt angle is generally time-dependent (i.e., varies along the beam transport line), and

is not well-defined when 〈x2〉 = 〈y2〉 [14]. According to Eq (41), we can express 〈x2〉, 〈y2〉,
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and 〈xy〉 in terms of the elements of β or w as follows:

〈x2〉 =
√

ε4D(QT
4 βQ4)11

=
√

ε4D

(
β11 cos2 θ + β12 cos θ sin θ + β21 sin θ cos θ + β22 sin2 θ

)

=
√

ε4D

[
(w2

1 + w2
3) cos2 θ + 2(w1w2 + w3w4) cos θ sin θ + (w2

2 + w2
4) sin2 θ

]
, (43)

〈y2〉 =
√

ε4D(QT
4 βQ4)22

=
√

ε4D

(
β11 sin2 θ − β12 sin θ cos θ − β21 cos θ sin θ + β22 cos2 θ

)

=
√

ε4D

[
(w2

1 + w2
3) sin2 θ − 2(w1w2 + w3w4) sin θ cos θ + (w2

2 + w2
4) cos2 θ

]
, (44)

〈xy〉 =
√

ε4D(QT
4 βQ4)12 =

√
ε4D(QT

4 βQ4)21

=
√

ε4D

(−β11 cos θ sin θ + β12 cos2 θ − β21 sin2 θ + β22 sin θ cos θ
)

=
√

ε4D

[
(w2

2 + w2
4 − w2

1 − w2
3) cos θ sin θ + (w1w2 + w3w4)(cos2 θ − sin2 θ)

]
. (45)

Here, w1, w2, w3, and w4 are the four elements of w, i.e.,

w =


 w1 w2

w3 w4


 . (46)

Finally, we note that the rms beam radius Rb can be expressed as

R2
b = 〈x2 + y2〉 =

√
ε4D(β11 + β22) =

√
ε4D(w2

1 + w2
2 + w2

3 + w2
4), (47)

which does not explicitly depend on the accumulated phase of rotation θ associated with

solenoidal field.

V. DISCUSSION

In the pervious two sections, we have constructed the Twiss parameters and beam matrix

in the context of generalized Courant-Snyder theory. Once the matrix envelope function

w is known, we can effectively describe the evolution of a beam distribution in the four-

dimensional trace space. To numerically integrate Eq. (15), we need to specify eight initial

values, i.e., (w1, w2, w3, w4)0 and (w′
1, w

′
2, w

′
3, w

′
4)0, which satisfy w′wT − wwT ′ = 0 at s = 0.

In terms of the elements of w, this condition can be expressed as

(w′
1w3 + w′

2w4 − w′
3w1 − w′

4w2)0 = 0. (48)
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In a closed (or periodic) lattice system, it is desirable to find periodically matched solu-

tions for w to construct the β functions, in which case the trace-space ellipse specified by

the Courant-Snyder invariant also becomes periodic. The periodic matching conditions are

(w1, w2, w3, w4)0 = (w1, w2, w3, w4)L, (49)

(w′
1, w

′
2, w

′
3, w

′
4)0 = (w′

1, w
′
2, w

′
3, w

′
4)L, (50)

where L is the lattice periodicity length. When w is the solution of the matrix envelope

equation (15), it follows automatically from Eq. (29) that

(w′
1w3 + w′

2w4 − w′
3w1 − w′

4w2)0 = (w′
1w3 + w′

2w4 − w′
3w1 − w′

4w2)L. (51)

Hence, one of the eight constraints in Eqs. (49) and (50) is redundant, and only seven of

them are indeed independent.

It is interesting to note that the matrix envelope equation (15) admits an orthogonal

symmetry. Suppose that we have an arbitrary constant orthogonal matrix C, i.e., CT C = I.

Operating on Eq. (15) with C(· · · ), and rearranging terms with I = CT C, readily give

Cw′′ + Cwκ̃ = C(w−1)T w−1CT C(w−1)T

=
[
(Cw)−1

]T
(Cw)−1

[
(Cw)−1

]T
. (52)

If w is the solution of the matrix envelope equation (15) with the condition in Eq. (48) and

periodic boundary conditions in Eqs. (49) and (50), then it follows automatically from Eq.

(52) that w̃ = Cw is also a solution that satisfies (w̃′w̃T−w̃w̃T ′)0 = 0 and (w̃, w̃′)0 = (w̃, w̃′)L.

Indeed, this multiplicity of solutions is found in the original Courant-Snyder theory as well.

For example, the sign of the envelope function w is not determined from the 1D envelope

equation, but only the positive solution is used in calculations for convenience [6].

On the other hand, it should be emphasized that the function β = wT w = wT CT Cw =

w̃T w̃ is unique for all the solutions of w in the same orthogonal group. We note also from

Eqs. (27), (28), and (34) that matched solutions for α and γ can be uniquely determined

in terms of the three elements of the beta-function matrix, β11, β12(= β21), and β22. In Sec.

VI we will demonstrate matched solutions for a non-conventional system, such as a helical

transport channel.
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VI. APPLICATION TO THE HELICAL TRANSPORT CHANNEL

To achieve fast and simultaneous reduction of the transverse and longitudinal phase

spaces of intense muon beams for a muon collider and a neutrino factory, a cooling scheme

that employs a helical magnetic field transport channel has recently been proposed [20].

The helical transport channel is composed of a solenoidal magnetic field component, which

does not change direction, and transverse dipole and quadrupole magnetic field components,

which change direction along the channel axis with helical symmetry. The periodic equilib-

rium orbit in the channel becomes a helix with the axial periodicity length λ of the helical

magnetic field, and the equilibrium radius is determined by the particle momentum along

the helical orbit, together with the pitch and strength of the field configuration. The linear

equations of motion for coupled transverse dynamics about the equilibrium orbit can be

expressed in the helically rotating frame as [21]

x′′ +
[

1

ρ2
x

+ κq

]
x− 2Ωy′ = 0, (53)

y′′ − κqy + 2Ωx′ = 0, (54)

where (x, y) is the scaled transverse coordinate relative to the equilibrium orbit, and the

coordinate along the channel z-axis has been chosen as the time-like independent variable.

Since the externally-imposed helical field structure is continuous, the bending radius ρx,

the quadrupole focusing coefficient κq, and the Larmor frequency Ω are all z-independent,

making the dynamical system conservative. For a complete analysis of emittance exchange,

energy loss by ionization, and the resultant six-dimensional cooling, the longitudinal dy-

namics and the cooling decrements should eventually be included in the model. However,

in the present study, we focus only on the transverse dynamics described by Eqs. (53) and

(54) to illustrate the calculation of the Twiss parameters and beam matrix in the context of

the generalized Courant-Snyder theory. We can express Eqs. (53) and (54) in the general

form of the Hamiltonian for the coupled transverse dynamics given in Eq. (1) by defining

κ ≡

 Ω2 + κq + 1

ρ2
x

0

0 Ω2 − κq


 . (55)

The condition for stability of the particle orbits in the transverse directions can be expressed

as

−κq

(
κq +

1

ρ2
x

)
> 0. (56)
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For the special case where κq + 1/ρ2
x = −κq, the transverse motions can be decoupled in

the Larmor frame, and the characteristics of the particle motion are well established, e.g.,

in Ref. [22]. On the other hand, when κq +1/ρ2
x 6= −κq, the transverse motions are strongly

coupled in the Larmor frame, and the focusing matrix κ̃ in the Larmor frame becomes

κ̃ = Q4κQ−1
4

=




(
Ω2 + 1

2ρ2
x

)
+

(
κq + 1

2ρ2
x

)
cos 2Ωz

(
κq + 1

2ρ2
x

)
sin 2Ωz(

κq + 1
2ρ2

x

)
sin 2Ωz

(
Ω2 + 1

2ρ2
x

)
−

(
κq + 1

2ρ2
x

)
cos 2Ωz


 , (57)

where we have chosen the initial phase of Larmor rotation to be θ(z = 0) = 0 without

loss of generality. Note that the focusing matrix κ̃ is periodic with axial periodicity length

L = π/Ω, not λ of the helical magnetic field.

To demonstrate the calculation of the β function and the beam matrix for a matched

beam in a helical channel, we solve the envelope matrix equation (15) numerically using

the standard shooting method with Newton iteration [23]. Lengths are normalized to the

lattice period λ, and we take Ω = 0.741, ρx = 0.147, and κq = −28.4 for this example. Since

the focusing matrix κ̃ has lattice period L = 4.24, we apply periodic boundary conditions

at z = 0 and z = 4.24. Shown in Fig. 1 are the matched solutions for the elements of

the beta-function matrix, β = wT w, and the corresponding beam matrix components in

the (x, y)-plane of the helical transport channel. It is interesting to note that when the

beam is periodically matched, then the projections of the beam distributions onto the plane

normal to the helically-rotating equilibrium orbit remain unchanged, independent of the

axial position z. When κq + 1/ρ2
x < −κq, the ellipse is elongated in the x-direction, while

the ellipse is elongated in the y-direction for κq+1/ρ2
x > −κq. In Fig. 2, we plot the evolution

of the matched beam over 50 helical lattice periods using the initial conditions in Fig. 1(a).

It is evident that the numerically determined matching conditions are accurate enough to

generate matched solutions all along the helical channel. When we introduce a mismatch

by applying slight (. 10%) modifications in the initial values, we observe complex envelope

oscillations around the matched beam envelopes [Fig. 2(b)]. These mismatch oscillations

may look benign at first glance, however, they can eventually result in emittance growth due

to nonlinearities or space-charge effects present in the actual transport system [16]. Finally,

we note that the tilt angle ξ of the ellipse calculated from Eq. (42) vanishes for the matched

case, despite the strong coupling, while ξ becomes finite for the mismatched case.
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FIG. 1: The matched solutions for the elements of the beta-function matrix β = wT w, and the

corresponding beam matrix components in the (x, y)-plane of the helical transport channel for the

cases with (a) κq + 1/ρ2
x < −κq , and (b) κq + 1/ρ2

x > −κq. To calculate case (b), we interchange

the values of the focusing coefficients κx and κy in Eq. (55).

VII. CONCLUSIONS

Extending the generalized Courant-Snyder theory [1, 2], we have constructed the Twiss

parameters and beam matrix in generalized form, which enables one to study coupled trans-

verse dynamics within a framework similar to the original Courant-Snyder formalism. It was

demonstrated that the initial conditions for the matrix envelope equation need to satisfy

(w′wT −wwT ′)0 = 0, which also simplifies the calculation of the beam matrix. In solving the
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FIG. 2: Evolution of the elements of the beta-function matrix β = wT w, and the corresponding

beam matrix components in the (x, y)-plane of the helical transport channel for (a) matched, and

(b) mismatched cases. For case (a), we applied the initial conditions in Fig. 1(a), while for case

(b), we made slight (. 10%) modifications in the initial values.

matrix envelope equation, we found that matched solutions for the envelope matrix w form

an orthogonal group. However, they give a unique matched solution for the beta-function

matrix β = wT w. Furthermore, the final expressions for the Twiss parameters (α, β, and γ)

and beam matrix (Σ) are remarkably similar to those of the original Courant-Snyder theory,

and provide a practical framework for accelerator design, transverse beam measurement and

control, and particle simulation studies.

In this study, we have focused mainly on the transverse dynamics with two degrees of

14



freedom using 2×2 matrixes, such as w, β, and κ. However, most matrix equations developed

in this paper are applicable to general n×n matrixes. Therefore, by choosing an appropriate

canonical variable set u, and by constructing the focusing matrix κ accordingly, we expect

to be able to extend the generalized Courant-Snyder theory to the case of three-dimensional

linear coupled dynamics as well. This extension will be particularly useful for the case where

both the transverse and longitudinal motions can be strongly coupled, for example, in the

six-dimensional phase-space cooling experiments [20, 24] noted in Sec. VI.
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