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Abstract 
Some calculations on longitudinal motion are presented.  rf bucket parameters and areas are discussed, for 
use in developing longitudinal matching conditions and constraints for ionization cooling cases. 
 

Longitudinal motion requires particular attention, since ionization cooling does not 
naturally cool effectively in the longitudinal direction, and energy straggling in the energy loss 
process naturally increases the energy spread to relatively large values.  Also, cooling at lower 
energies (pµ < 300 MeV/c) heats the beam longitudinally. The transport must keep the beam 
confined longitudinally, and additional longitudinal cooling (from emittance exchanges) must be 
regularly included in the cooling channel. 

The equations of longitudinal motion in a cooling linac are: 
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This second equation should be modified in the case of a noncollinear transport by the inclusion 
of the nonisochronous transport element M56

�  ≡ 1/γt
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where M56
′ = η/R and η is the dispersion and R is the local bending radius, and the symbol Cl  is 

introduced as a shortened notation for the equation coefficient.  
 
For the case of a collinear transport equation 2 can be rewritten as: 

2
0 0 0 0

1 1 2 2 1

1

φ π π γ
β β λ λ β γ

� �� �
� �= − − = − −� � � �−� � � �

d
ds

    (4) 

And the first equation can be written as: 
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For the case where there is no acceleration of the reference particle (φs = 0), equations 4 and 5 can 
be integrated to obtain: 
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In ionization cooling an energy loss term dE/ds is added. The mean energy (E0) remains 
constant if dE/ds  = eV′ cos φs.  If only this mean energy loss is included, then the equations of 
motion are integrable for ∆E, φ, and particle trajectories move along orbits such that: 
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where φo is a constant of a trajectory and ∆E(φ) maps out a particle trajectory.  The 
separatrix (separating trapped from untrapped particles) is obtained from eq. 4 with φ0 = 
π- 2φs.  Figure 1b shows the separatrix and an interior orbit (φ0 = π-4φs) at “typical” 
ionization cooling parameters, used in ASOL cooling segments: eV′ = 10 MV/m, φs = 
30°, βγ = 2, P(total) = 211 MeV/c, αp =1/γ2, and λo = 1.5m (200 MHz rf).  The example 
requires inclusion of absorbers with a mean energy loss of 5 MV/m.  The separatrix for 
this case extends over ∆E = ± 52.6 MeV.(see fig. 1)  The numbers indicate that there are 
not large safety factors in forming stable bunch configurations at ionization cooling 
parameters. The maximum energy offset of the separatrix is obtained by evaluating eq.4 
with φ0 = π- 2φs  and �=0: 
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A useful parameter is the ratio of the energy to the phase amplitude (in the small 
amplitude limit); this corresponds to a longitudinal “betatron” function: 
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This factor is ~0.031 MeV-1 at the reference parameters.  This can be changed into a 

distance unit by multiplying by the wavelength (λ/2π): 
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 This becomes more properly a longitudinal betatron function when the variable δp/p 
= �E/(β2γmc2) is used: 
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Another useful parameter is the longitudinal motion oscillation length-the distance over 
which the longitudinal motion undergoes a full phase-space oscillation.  For small 
amplitude oscillations this can be written as: 
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This is ~40m at the reference parameters. 

As previously discussed, the rms energy spread is naturally at least 3% from energy 
straggling with cooling. Thus an rms energy spread of ∆Erms ~12MeV (3σ = 36 MeV), would fit 
within the rf bucket shown in Fig. 1 and would have a 3σ phase spread of ±1.1 radian (φrms ≅ 0.37 
radians or δct ≅ 8.8cm, which would lead to a normalized longitudinal emittance of εL,rms ≅ δct 
∆Erms/(mc2) ≅ 0.01m.  These parameters may be considered in an initial cooling scenario. The 
beam should be initially trapped within the bucket and the beam would remain within the bucket 
for a significant distance before energy straggling causes beam loss. 

In the Study 2 scenario the beam rms energy spread is 24 MeV, which places the rf bucket 
border at 2σ.  A bunch length twice as long (18cm rms) would be correspondingly matched.  In 
this case, as in Study I, the beam would initially fill the cooling bucket and leak from it with 
straggling as the beam propagates down the cooling channel.  

Longitudinal motion in a helical cooling channel follows similar equations.  The equations of 
motion are: 
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and �  is the helical pitch and D̂ is the helical dispersion factor. z, the longitudinal cooridinate 
along the helix axis, is used as the independent variable.  The same equations for phase space 
follow, with �p/(�3

�) replaced by �H.  

 

 The stable phase space area can be found by integrating 2	E from minimum to maximum � 
(using eq. 4). For the case of φs = 0, This area (in  	E-.φ) is: 
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We can change the unit to meters by multiplying by �0/2
 and dividing by mc2, obtaining: 
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For the baseline numbers (V’ = 10 MV/m, ��=2, �0=1.5m mc2=105.66 MeV) this is 
1.624m.  To change this full beam size to an rms unit (�z �E/mc2) we might divide by 4
, 
obtaining 0.13m.  If �s is nonzero, one can integrate 2	E numerically, obtaining a smaller area 
than at φs = 0.   That reduction factor as a function of  �s is shown in figure 2. The stable phase 
area decreases rapidly with increasing �s At �s = 
/6 or 30°, a commonly used stability point, the 
phase area is ~0.33 of that at �s = 0 (0.043m in rms estimates at baseline parameters.).  

This reduction is an important part of the difficulty in transition from stationary to 
accelerating (or cooling) beam dynamics, and is a major cause of losses in these transition.  Even 
small changes reduce the stable phase area significantly.  (The area is reduced by ~33% at �s 
=10°.)  S. Y. Lee has approximated this area change factor as: 
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which is a fairly close approximation to the numerical integration for �s <1.5.  

Matching of longitudinal betatron functions is obtained simply when V’ cos �s  is matched; 
but stable phase space area is not then matched when �s  changes.. 

 

 

The equations discussed above can be used to develop other parameters for longitudinal 
beam matching. 
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Figure 1: rf bucket shape  for P = 212 MeV/c muons at parameters of eV′ = 10 MV/m, φs =30°, E 
αp =1/γ2, and λo = 1.5m (200 MHz rf). Phase space area of the rf bucket is 237MeV-radians or 
0.54m. 
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Figure  2. Reduction of the stable phase space area (in �-
E) of the rf bucket as a function of 
stable phase �s in radians.  Operation at �s = 30° reduces the rf bucket area to ~1/3 of the �s=0 
value. 
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Figure 3: Same plot but with (1-sin(�s))/(1+sin(�s)) also shown in red 


