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Abstract

The classification of periodic alternating lattices was analyzed in
great details by R. Fernow [1]. In this note I suggest a faster and
economical numerical procedure to calculate the matched beta (β)
function of each one of these lattices.

1 INTRODUCTION

It is well known that a periodic lattice has resonances when the betatron
wavelength Λ of a single particle is identical to the period of the periodic
magnetic field λ; this happens at ps ≈

qλ

4π

√
< B2 > ≈ λBo

59
. [2] In the vicinity

of these values the transmission through the channel is reduced dramatically;
consequently, there are regions in momentum space where the transmission
is optimal also known as pass bands. It is of interest to calculate the beta
function in the pass bands zones and in particular the matched β-function is
of maximum concern.

The standard procedure is to solve the beta function equation of motion

2β(s)β′′(s) − β′(s)2 + 4β(s)2κ(s)2 − 4 = 0 (1)

where κ(s) = qBs(s)
2ps

and then imposing the constrains β(0) ≡ β(λ) and

β′(0) ≡ β′(λ). In practice the above equation (Eq. 1) is repetitively solved
for different initial conditions β(0)andβ′(λ) guided by an optimizer until the
equality with the value at the end of the period is achieved ( within an
assumed error).
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2 New Approach

In a recent paper H. Qin and R. Davidson [3] have pointed out that the
generalized Courant-Snyder invariant (constant of motion) can be used to
simplify the finding of matched solutions for periodic solenoidal lattices. The
numerical algorithm is fast and simple and it requires to find the solution of
Eq. 1 only once.

First I recall the main results of Ref. [3] without giving the mathematical
proof

Theorem 2.1 If ω1(s) and ω2(s) are the envelope functions (ω(s)2 = β(s)ǫ
with ǫ the emittance of the beam) and κ(s) is an arbitrary periodic function
with period λ ,i.e κ(s) = κ(s + λ) and the envelope function satisfy the
equations

ω′′

1(s) + κ(s)2ω1(s) =
ǫ2
1

ω1(s)3

ω′′

2(s) + κ(s)2ω2(s) =
ǫ2
2

ω2(s)3

(2)

then

I = ǫ2
2

(

ω1(s)

ω2(s)

)2

+ ǫ2
1

(

ω2(s)

ω1(s)

)2

+ (ω2(s)ω
′

1(s) − ω′

2(s)ω1(s))
2

is an invariant

(3)

The presence of the invariant is, of course, the telling sign of a symmetry in
the problem. References [3] discuss this in details and identify the symme-
try group and the underlying Lee algebra. This symmetry is refers as the
Courant-Snyder symmetry and the invariant Eq. 3 as the Courant-Snyder
invariant. Several particular cases of this invariant has been discussed in the
literature.

We give a few intermediate steps to verify that d I
d s

= 0 ( we take ǫ1 =
ǫ2 = 1 to simplify the equations):

• d I
d s

= 2 (ω2ω
′

1 − ω′

2ω1)
{

ω2ω
′′

1 − ω′′

2ω1
ω2

ω3

1

− ω1

ω3

2

}

after judicious collection

of terms

• substituting ω′′

1 and ω′′

2 from Eq. 2 we verify that indeed d I
d s

= 0.
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We define, as customary, the phase advance function

Ψ(s) =

∫ s

o

ds′
ǫ2

ω2(s′)2
(4)

and we assert that

ω1(s) =
ω2(s)
√

2ǫ2
2

√

(

I +
√

I2 − 4ǫ2
1ǫ

2
2 sin 2(Ψ(s) + Φ0)

)

(5)

here I and Φ0 are two constants. We understand Eq. 5 as a general solution
of the envelope equation, i.e ω1(s), in term of a particular solution ω2(s)
obtained with arbitrary initial conditions ω2(0) and ω′

2(0).
Now we proceed to calculate the matched solution; to do that we look for

constants I and Φ such that

ω1(0) ≡ ω1(λ) and

ω′

1(0) ≡ ω′

1(λ)
(6)

these two conditions yield two non-linear algebraic equations to be solved
by standard root searching algorithms. Once Inew and Φnew are determined
then the matched envelope function and consequently the beta function is
written as

ω(s)match =
ω2(s)
√

2ǫ2
2

√

(

Inew +
√

I2
new − 4ǫ2

1ǫ
2
2 sin 2(Ψ(s) + Φnew)

)

(7)

3 Results

A simple fortran program [4] has been written to integrate the envelope
function equation and a subsequent one to solve the two non-linear algebraic
equations.

The results are shown in Figs. 1, 2.
These results are in agreement with those found by Fernow [1], [2].
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Figure 1: (Color)Plot of ωmatched vs. s for different momentum from left to
right, 90 , 170, and 400 MeV/c.
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Figure 2: (Color)Plot of ωmatched vs. s for different momentum from left to
right, 275 and 380 MeV/c. Magnetic field with harmonics.
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