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Abstract

Using Lie algebra techniques, we derive an analytical expression for the nonlinear Hamiltonian and the
linear tune shift with amplitude due to quadrupole fringe fields. Numerical examples for the muon storage
ring are compared with exact results from COSY INFINITY [1].

In current-free regions, the magnetic field fulfills ~∇× ~B = ~0 and ~∇ · ~B = 0. It can be derived either from a
scalar potential φ or a vector potential ~A, as ~B = ~∇× ~A = ~∇φ. If the field does not depend on z, the differential
operators act only in the two transverse dimensions. In this case, the general form of the transverse magnet
field is the standard multipole expansion:

By + iBx =
∞∑

n=1

[bn + ian] [x+ iy]n−1/rn−1
0 (1)

where r0 denotes a reference radius. This is the usual situation without fringe fields. The longitudinal field
component Bz = Bz0 is constant and equal to zero, except in a solenoid. The corresponding scalar potential
for a normal quadrupole field (b2 6= 0) is

Φ2 =
b2
r0
xy, (2)

for a normal octupole (b4 6= 0)

Φ4n =
b4
r3

0

[x3y − xy3], (3)

and for a skew octupole (a4 6= 0)

Φ4s =
a4

4r3
0

[y4 − 6x2y2]. (4)

Now consider a quadrupole of finite length and aperture, whose field depends on the longitudinal position z. In
this case, the scalar potential Φ contains z-dependent terms and obeys the three-dimensional Laplace equation.
In polar coordinates, x = r cos θ and y = r sin θ, the scalar potential can be written as [2, 3]

Φ(r, θ, z) = G(r, z)r2 sin 2θ

2!
= [G20(z) +G22(z)r

2 + . . .]r2 sin 2θ

2
(5)

The first term in the square brackets on the right-hand side, G20(z), parametrises the field variation on the
magnet axis, via G20(z) = ∂By/∂x(z)|r=0. Its derivative also gives rise to a longitudinal field component.

The second term in Eq. (5) is related to the second derivative of G20:

G22(z) = − 1

12

d2G20(z)

dz2
(6)
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The scalar potential associated with this term is proportional to

r4 sin 2θ

2
= [x3y + y3x] (7)

Comparison with Eqs. (3) shows that this polynomial differs from that of an ordinary octupole by the relative
sign of its two arguments. In addition, derivatives with respect to z introduce longitudinal field components,
which are absent for fields that are independent of z. Thus, for a variety of reasons the fringe field effect cannot
be described by the usual multipole expansion [4]1.

The integrated effect on a particle trajectory is conventionally described by a Hamiltonian which contains
the vector potential ~A and not the scalar potential Φ. Thus, the polynomial form of the Hamiltonian form is
different from that of the scalar potential.

For example, a normal quadrupole (b2 6= 0) corresponds to the Hamiltonian

H2n =
1

2
K2n[x2 − y2] (8)

where K2 = b2lQ/(Bρ)/r0, lQ denotes the length of the magnet, and (Bρ) the magnetic rigidity. Similarly, the
Hamiltonians for a normal (b4 6= 0) or skew octupole (a4 6= 0) are

H4n =
1

24
K4n[x4 − 6x2y2 + y4], (9)

H4s =
1

6
K4s[y

3x− x3y], (10)

with K4n = 6b4/(Bρ)/r
3
0, and K4s = 6a4/(Bρ)/r

3
0. The evolution of a particle trajectory then follows from

Hamilton’s equations: dx′/dz = −∂H/∂x, and dy′/dz = −∂H/∂y.
To represent the fringe field effect by a Hamiltonian, we must find the vector potential ~A. For simplicity,

we rewrite Eq. (5) as
Φ(r, θ, z) = Φ0 sin 2θ (11)

so that only the quadrupolar azimuthal dependence is explicit. We know that Br = ∂Φ/∂r, Bz = ∂Φ/∂z, and
Bθ = 1/r(∂Φ/∂θ). One choice of vector potential which gives the same magnetic field is [5]

Ar =
1

2
r
∂Φ0

∂s
cos 2θ (12)

Az = −1

2
r
∂Φ0

∂r
cos 2θ (13)

Aθ = 0 (14)

This can be verified explicitly:

Br =
1

r

∂Az
∂θ

=
∂Φ0

∂r
sin 2θ =

∂Φ

∂r
(15)

Bz = −1

r

∂Ar
∂θ

=
∂Φ0

∂z
sin 2θ =

∂Φ

∂z
(16)

Bθ =
∂Ar
∂z
− ∂As

∂r
=

1

r

∂

∂θ
Φ0 sin 2θ (17)

1By placing several families of octupoles at positions with large and small βx/βy ratios, respectively, it might still be possible
using octupoles to globally compensate the two terms proportional to x3y and y3x.

2



where in the last line we used the fact that the scalar potential Φ = Φ0 sin 2θ satisfies the Laplace equation:

∂2Φ

∂θ2
+

1

r

∂

∂r

(
r
∂

∂r

)
Φ +

1

r2

∂2

∂θ2
Φ = 0 (18)

In the following, we only retain the lowest-order terms generated by G20 (in Ar) and G22 (in Az), namely:

Ar ≈ r3

4

[
dG20(z)

dz
+ r2 dG22(z)

dz
+ . . .

]
cos 2θ (19)

Az ≈ −r
2

2

[
G20(z) + 2r2G22(z) + . . .

]
cos 2θ (20)

which are inserted into the general form of the Lie-algebraic Hamiltonian [5]:

H =
1

2

(
pr −

qAr
p0(1 + δ)

)2

+
p2
θ

2r2
− qAz
p0(1 + δ)

(21)

≈ Hlin −
q

p0
prAr −

q

p0
Az (22)

Here q denotes the charge of the particle, and pr, pθ the radial and angular momenta, respectively, and we omit
the δ-dependence. Keeping again only the two lowest-order nonlinear terms (up to 4th power in r and pr) we
obtain

H ≈ Hlin −
1

Bρ

dG20

dz

1

4
r3pr cos 2θ + r4 1

Bρ
G22(z) cos 2θ (23)

where the linear part, Hlin, includes the usual kinematic term, 1
2 [p2

r + p2
θ/r

2], and also the linear quadrupole
focusing, 1

2
KQr

2 cos 2θ, with KQ = G20/(Bρ). The nonlinear perturbation, Hpert = H −Hlin, can be expressed
in cartesian coordinates, x and y as

Hpert ≈ −
1

Bρ

dG20(z)

dz

1

4
(x2 − y2)(xpx + ypy)−

1

12

1

Bρ

d2G20

dz2
(x4 − y4) (24)

Next we integrate the Hamiltonian over the incoming or outgoing side of the magnet. We assume that the fringe
field extends over a longitudinal distance ±∆ around the edge of the magnet. The distance ∆ is proportional
to the magnet aperture. Next, to evaluate the integral

Ĥ =

∫ ∆

−∆

Hpert(z)dz (25)

we perform a Taylor expansion of the transverse coordinates in terms of z, around the entrance or exit points
of the magnet 2. The two reference points are taken to be the positions where the field gradient is 1/2 of its
value at the center of the magnet. We assume that the field fall-off is symmetric about each of these points.

For example, the second argument in Eq. (24) is expanded as

(x4 − y4) =

{
[x4 − y4]0 + z

[
d

dz
(x4 − y4)

]

0

+
z2

2

[
d2

dz2
(x4 − y4)

]

0

+ . . .

}
(26)

2For a special form of the field fall-off, and considering one dimension only, M. Venturini recently computed the integrated
fringe-field Hamiltonian without resorting to a Taylor map expansion [6].
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The subindex 0 refers to the expansion point. Inserting this into Eq. (25), we obtain integrals from −∆ to +∆
of the form

1

Bρ

∫ ∆

−∆

G′20dz = KQ, (27)

1

Bρ

∫ ∆

−∆

G′20zdz = 0, (28)

1

Bρ

∫ ∆

−∆

G′20z
2dz ≈ 1

3
∆2KQ, (29)

1

Bρ

∫ ∆

−∆

G′′20dz = 0, (30)

1

Bρ

∫ ∆

−∆

G′′20zdz = −KQ, (31)

1

Bρ

∫ ∆

−∆

G′′20z
2dz = 0, (32)

where we used the assumption that the fringe fall-off is symmetric about the entrance (or exit) point. All the
results quoted are for the incoming edge. For the outgoing edge, the signs on the right-hand-side are inverted.

Three terms, corresponding to the three non-vanishing integrals above, contribute to the integral, Eq. (25).
We make this transparent by writing Ĥ = Ĥ1 + Ĥ2 + Ĥ3. The first term results from the first term on the
right-hand-side of Eq. (24) and the nonzero integral in Eq. (27). It reads

Ĥ1 = −1

4
KQ

[
(x2 − y2)i(xpx + ypy)i − (x2 − y2)o(xpx + ypy)o

]
(33)

The subindices i and o indicate coordinates at the incoming and outgoing sides, respectively, and KQ is the
normalized quadrupole gradient in units of inverse squarea meters, or KQ = G20(0)/(Bρ).

The second term arises from the second term in Eq. (240 and from Eq. (31):

Ĥ2 =
1

3
KQ

[
(x3px − y3py)i − (x3px − y3py)o

]
(34)

Adding the two previous equations, we get

Ĥ1+2 =
1

12
KQ

[
xpx(x

2 + 3y2)− ypy(y2 + 3x2)
]
i

− 1

12
KQ

[
xpx(x

2 + 3y2)− ypy(y2 + 3x2)
]
o

(35)

This agrees with the effect of an ideal hard-edge fringe field, which was calculated by Lee-Whiting [7] and, more
recently and in more general form by E. Forest and J. Milutinovic [8]. This term, which is independent of the
fringe field length ∆, will turn out to be the dominant nonlinear effect, in good agreement with Venturini’s
result for a 1-dimensional fringe field [6].

Finally, the last term, which derives from the integral in Eq. (29) and, again, from the first part of Eq. (24),
depends on the fringe length:

Ĥ3 = − 1

24
∆2KQ

[(
6xp3

x − 6yp3
y − 10KQx

3px − 10KQy
3py
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+6KQx
2ypy + 6KQy

2xpx + 2xpxp
2
y − 2ypyp

2
x

)
i

−
(
6xp3

x − 6yp3
y − 10KQx

3px − 10KQy
3py

+6KQx
2ypy + 6KQy

2xpx + 2xpxp
2
y − 2ypyp

2
x

)
o

]
(36)

The coordinates at the outgoing side, ‘o’, can be expressed by those at the entrance of the magnet using
the linear transformation through the quadrupole. We assume that (

√
KQlQ) is sufficiently small, that we can

linearly expand the sin(
√
KQlQ) or sinh(

√
KQlQ) functions in the elements of the R matrix. In our example

below,
√
KQlQ is about 0.13. We will also assume that the quadrupole is short, and that the beta function at

the quadrupole is large, or specifically that

KQ � 1/β2 (37)

and

lQ � β (38)

Under these conditions, the transverse coordinates are approximately constant within the magnet

x0 ≈ xi (39)

y0 ≈ yi (40)

and primarily only the trajectory slopes change, roughly as

pxo ≈ pxi − (KQlQ)xi (41)

pyo ≈ pyi + (KQlQ)yi (42)

The ∆-independent part of Ĥ becomes

Ĥ1+2 ≈ 1

12
(KQlQ)KQ

[
x4 + 6x2y2 + y4

]
(43)

where the coordinates x and y may now be taken to be those at the center of the magnet.
Again using Eqs. (41) and (42) and keeping only the largest components, the next term in the Hamiltonian,

Eq. (36), can be approximated as

Ĥ3 ≈
5

12
∆2K2

Q(KQlQ)
[
x4 − y4

]
(44)

Expressing the transverse positions in terms of action angle coordinates, x =
√

2Ixβx cos φx and y =√
2Iyβy cosφy, and averaging the Hamiltonian Ĥ = (Ĥ1+2 + Ĥ3) over the betatron phases φx and φy us-

ing < cos4 φ >= 3/8 and < cos2 φ >= 1/2, the nonlinear Hamiltonian representing the effect of the fringe fields
reads

< Ĥ > =
1

8

∑

Q

(KQlQ)KQ

[
β2
x,QI

2
x + 4βx,Qβy,QIxIy + β2

y,QI
2
y

]

+
5

8

∑

Q

∆2K2
Q(KQlQ)[β2

xI
2
x − β2

yI
2
y ] (45)
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The sum is over all quadrupoles Q, and KQ > 0 for a horizontally focusing quadrupole. The derivatives of

< Ĥ > with respect to Ix,y yield the amplitude dependent tune shifts:

∆Qx =
1

8π

∑

Q

(KQlQ)KQ

[
β2
x,QIx + 2βx,Qβy,QIy

]

+
5

8π

∑

Q

∆2lQK
3
Qβ

2
xIx (46)

∆Qy =
1

8π

∑

Q

(KQlQ)KQ

[
β2
y,QIy + 2βx,Qβy,QIx

]
(47)

− 5

8π

∑

Q

∆2lQK
3
Qβ

2
yIy. (48)

where NQ is the number of quadrupoles. All three tune shifts, ∆Qx/∆Ix, ∆Qx/∆Iy = ∆Qy/∆Ix, and
∆Qy/∆Iy, are positive and of comparable magnitude.

As a practical example, consider the muon storage ring, whose optics is shown in Fig. 1. The ring consists
of three parts: a neutrino production straight, a return straight, and the (two) arcs. We first evaluate the
tune shift from the arcs. A detailed view of the arc optics is shown in Fig. 2. There are a total of 31 arc
cells, each comprising two quadrupoles. Using maximum and minimum beta functions of βx,y of 16 m and 3
m, respectively, a quadrupole length lQ = 1 m, strength KQ = 0.31 m−2, and zero fringe extent (∆ = 0), we
estimate ∆Qx/∆Ix ≈ ∆Qy/∆Iy ≈ 31, and ∆Qx/∆Iy = ∆Qy/∆Ix ≈ 23. We can compare these estimates with
an exact calculation using the program COSY INFINITY [1, 9], which gives ∆Qx/∆Ix = 30, ∆Qx/∆Iy = 28
and ∆Qy/∆Iy = 34. The agreement between COSY and our first-order estimate is quite satisfactory.

The same comparison can be made for the neutrino production straight. Here the maximum and minimum
beta functions are about 430 m and 300 m, the quadrupole strength KQ ≈ 0.0019 m−2, the length lQ = 3 m, and
the total number of cells is 5. We then obtain ∆Qx/∆Ix ≈ ∆Qy/∆Iy ≈ 0.6, and ∆Qx/∆Iy = ∆Qy/∆Ix ≈ 1.1.
These values almost perfectly agree with the COSY results of 0.6 and 1.0, respectively. The product [β2K2

QlQ]
scales about as 1/β, which explains why the tune shift induced in the arcs is much larger than that from the
production straight.

The actual value of the tune shift at 1σ can be estimated by setting Ix,y in the above expressions for ∆Qx,y
equal to half the rms geometric emittance εx,y/2. For the nominal rms emittance, εx,y ≈ 7 µm, the tune shift
due to fringe fields in arcs and straight section is small.

The part of the tune shift quadratic in ∆ is suppressed compared to the ∆-independent part by a factor
∆2KQ. For quadrupoles in the production straight with KQ = 0.002 m−2 and ∆ = 0.17 m, this suppression
factor is 10−4. We expect that the contributions from higher-order terms are even less important.
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Figure 1: Optics for the FNAL muon storage ring; courtesy of C. Johnstone.
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Figure 2: Optics for an arc cell of the FNAL muon storage ring; courtesy of C. Johnstone.
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